University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

Theses, Dissertations, and Major Papers

1-1-1993

Synthesis, characterization and crystal structures of homonuclear copper complexes with 1,3-bis(dimethylamino)-2-propanol as ligand.

Jian-Chuan Zheng University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation

Zheng, Jian-Chuan, "Synthesis, characterization and crystal structures of homonuclear copper complexes with 1,3-bis(dimethylamino)-2-propanol as ligand." (1993). *Electronic Theses and Dissertations*. 6914. https://scholar.uwindsor.ca/etd/6914

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontano) K1A 0N4

Your life - Some interence

Our Nell Numerelevence

AVIS

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canadä

SYNTHESIS, CHARACTERIZATION AND

CRYSTAL STRUCTURES OF

HOMONUCLEAR COPPER COMPLEXES WITH

1,3-Bis(dimethylamino)-2-Propanol as Ligand

BY JIAN-CHUAN ZHENG

A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Chemistry and Biochemistry in Partial Fulfilment of the requirements for the Degree of Master of Science at the University of Windsor

Windsor, Ontario, Canada

1993

National Library of Canada

Bibliothèque nationale du Canada

Direction des acquisitions et

des services bibliographiques

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontano K1A 0N4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your the Water reference

Our line Austre references

The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada reproduce, to loan. distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence irrévocable et exclusive non permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-83050-6

Name

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

SUBJECT TERM

The right

43 13 **I**-M-I \sim SUBJECT CODE

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

In ochang

COMMUNICATIONS AND TI	HE ARTS
Architecture	. 0729
Art History	0377
Cinema	0900
Dance .	0378
Fine Arts	0357
Information Science	0723
Journalism	0391
Library Science	0399
Mass Communications	0708
Music	0413
Somech Communication	0459
Theolor	0465

General	0515
Administration	0514
Adult and Continuing	0514
Annolumi	0517
	0077
Art is a second	
Bilingual and Multicultural	0284
Business	
Community College	0275
Curriculum and Instruction	0727
Forly Childhood	0518
Flammation	0524
CREATENING CONTRACTOR	0.024
rinonch	.02//
Guidance and Counseling	
Health	
Higher	0745
Hivory of	0520
Home Economics	0278
Industrial	0577
	0.521
Language and Literature	
Mothematics	0280
Music	0522
Philosophy of	0998
Physical	0523

Psychology 0525 Reading Religious Sciences 0527 0577 rooda Social Scie ociole ogy of 07.40 ... Social Teacher Training Technology Tests and Measurements 0710 0747 Vocational LANGUAGE, LITERATURE AND LINGUISTICS Longuage 0679

Ancient	0289
Linewistics	0290
Modern	0291
Internation	
General	0/01
Claused	0.204
Classical	
Comparative	
Medieval	0297
Modern	. 0298
Atrican	0316
Amoncon	0591
Asion	0305
Canadian (Earlish)	00000
Conocion (French)	0355
English	.0593
Gormanic	0311
Latin American	0312
Middle Fastern	ักว่ารั
Pomotore	0212
	.0313
JIGVIC ONG COST EURODEON	. U314

THE SCIENCES AND ENGINEERING

Geodesy

BIOLOGICAL SCIENCES

Agriculture	
General	0473
Agronomy	0285
Animal Culture and	
Nutrition	0475
Animal Pathology	0476
Food Science and	
Technology	0359
Formativ and Wildlife	0478
Plant Culture	0479
Plant Patholagy	0480
Plant Physiology	0817
Rance Management	0777
Wood Technology	0746
Rielson	
(monorol	0304
A settem.	0300
Biosholistics	0209
Betern	
Call	0307
Easland	0220
Ectorelan:	
Eniomology	0353
Concics	
Umnology	
Microbiology	
Molecular	
Neuroscience	
Oceanography	
Physiology	0433
Radiation	0821
Velerinary Science	0778
Zoology	0472
Biophysics	
General	0786
Medical	0760
EARTH SCIENCES	
Biogeochemistry	0425
Geochemistry	0996

Jeodesy Jeology Jeophysics Mineralogy faleobotany faleobotany faleoatology faleoatology faleoatology faleoatology faleoatology faleoatology faleoatology faleoatology faleoatology faleoatology	0370 0372 0373 0388 0411 0345 0426 0418 0985 0427 0368
nysical Oceanography	
IEALTH AND ENVIRONMENTA	L
KIENCES	
invironmental Sciences	0768
toolth Sciences	
General	0566
Chemotherpay	
Denhstry	0567
Education	0350
Hospital Management	0769
Human Development	0758
Immunology	0982
Medicine and Surgery	0304
Numine	0540
Nutrition	0570
Obstetrics and Gynecology	. 0380
Occupational Health and	
Therapy	0354
Ophthalmology	0381
Panology	
Phormocology	0572
Physical Therapy	0382
Public Health	0573
Rodiology	0574
Rectection	0575

Philosofhy, religion and	
THEOLOGY	
Philosophy	0422
Religion	
General	0318
Biblicol Studies	0321
History	0319
Philosophy of	0322
Theology	0469
SOCIAL SCIENCES	
American Studies	.0323
Anthropology	0224
Cultural	0324
Physical	0327
Business Administration	
General	0310
Accounting	.0272
Banking	.0770
Management	0220
Conoclion Studies	0185
Economics	
General	.0501
Agricultural	.0503
Commerce-Business	.0505
Findance	8060
fabor	0510
Theory	.0511
Folklore	0358
Geography	.0366
Gerontology	.0351
Cistory	0670
Senergi	. 43/8

Ancient	0579
Modern	0582
Block	0328
Alricon	0331
Asia, Australia and Oceania	0332
	0334
Lotin American	0333
Middle Eastern	0333
United States	0337
History of Science	0585
	0398
Political Science	~~~
	0013
Relations	0616
Public Administration	0617
Recreation	0814
Social Work	0452
Sociology	
General	0626
Criminology and renology	002/
Ethnic and Rocial Studies	0631
Individual and Family	
Studies	0628
Industrial and Labor	
Relations	.0629
Fublic and Social Welture	0630
Demicrone and	0200
Theory and Methods	0344
Ironsportation	0709
Urban and Regional Planning	0999
Women's Studies	0453

Speech Pathology	
Taxicology	
ome Economics	0386

Er

.

PHYSICAL SCIENCES

P. na Crianna

Full Jucifices	
Chemistry	
General	0485
Anticultural	0749
Appletical	14840
Bia alia astrata	0497
biochemistry	
inorganic	
Nucleor	0738
Organic	0490
Phormoceuticol	0491
Physical	0494
Polymor	0495
Radiation	0754
Mathematica	0405
Disaria.	
rinysics	-
General	
Acoustics	UY86
Astronomy and	
Astrophysics	0606
Atmospheric Science	0608
Atomic	0748
Electronics and Electricity	0607
Elementary Particles and	
High France	0700
Sluid and Discus	0750
Atalas das	0/37
Nucleor	
Ophos	0752
Radiation	0756
Solid State	0611
Statistics	0463
A	
Apples sciences	
Applied Mechanics	0346
Computer Science	0984

General Aerospoce Agricultural Automotive Biomedical	0537 0538 0539 0540
Chemical Civil Electronics and Electrical Heat and Thermodynamics. Hydraulic	.0542 .0543 .0544 .0348 .0348
Industrial Marine Materials Science Mechanical Metallurgy	0546 0547 0794 0548 0743
Nuclear Nuclear Packaging Petroleum Sanitary and Municipal	0552 0549 0765 0554
SYSTEM SCIENCE	0790
System Science Geotechnology Operations Research Plastics Technology Textile Technology	0790 0428 0796 0795 0795
System Science Geotechnology Operations Research Mastics Technology Textile Technology SYCHOLOGY General Behavioral Clinical Developmental Excerimental	0790 0428 0796 0795 0994 0621 0384 0622 0620
System Science Geotechnology Operations Research Mastics Technology Textile Technology Senteral Behavioral Clinical Developmental Experimental Industrial Personality Physiology Psychobiology Psychobiology Social	.0790 .0428 .0796 .0795 .0994 .0621 .0384 .0622 .0623 .0623 .0624 .0625 .0631

^oCopyright by Jian-chuan Zheng 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The University of Windsor

Faculty of Graduate Studies and Research

Certificate of Examination

The thesis has been examined and approved by

Dr. D.W. Stephan langle atter

Dr. D.F. Watt

lat

Dr. Suning Wang Scuring Dany

Abstract

Reaction of 1,3-bis(dimethylamino)-2-propanol (bdmapH) with CuCl₂ in 1:1 ratio yielded a dimeric Cu(II) compound 1 with the formula of Cu₂(bdmapH)₂Cl₄, which is a dizwitterion with two intramolecular ammonium groups. Its crystal structure was fully characterized by singlecrystal X-ray diffraction analysis. Compound 1 crystallizes in the monoclinic space group C2/c with a = 18.619(3)Å, b = 12.129(2)Å, c = 13.822(2)Å, β = 106.69(1)°, V = 2989.8(7)Å³ and Z = 4. The proton bonded to nitrogen was located directly from a difference Fourier map in the X-ray crystal structure analysis. The presence of a N-H bond was also confirmed by IR spectroscopy, $v(N-H) = 3420 \text{ cm}^{-1}$. Compound 1 has an effective magnetic moment, $\mu_{eff} = 1.56$ B.M. at 23°C, which indicates antiferromagnetic coupling of the unpaired electrons between two copper atoms. The proton on the ammonium group can be removed by a base through an intermolecular process. This has been demonstrated by the reaction of Cu₂(bdmapH)₂Cl₄ with Cu(OMe)₂ in 1:1 ratio in CH₂Cl₂ to produce a trimeric Cu(II) compound 2 with the formula of Cu₃(bdmap)₂Cl₄. Compound 2 crystallizes in the monoclinic space group $P2_1/a$ with a=16.45(2)Å, b=10.445(7)Å, c=16.47(1)Å, $\beta=101.52(8)$ °, V=2793(5)Å³, and Z=4. Compound 2 also exhibits an antiferromagnetic exchange behaviour. Both dimer 1 and trimer 2 display irreversible redox behaviour.

A new class of tetranuclear copper complexes with planar cyclic structures has been synthesized by using 1,3-bis(dimethylamino)-2-propanolato and acetate ligands. Three members of this class of molecules have been characterized structurally. Compound 3 with the formula $[Cu_4^n(bdmap)_3(OH)(OAc)_2(HOAc)(H_2O)][PF_6]_2$ and compound 5 with the formula $[Cu_4^n(bdmap)_2(OAc)_4][PF_6]_2$ are discrete molecular complexes in the solid state. Compound 4 with the formula $[Cu_4^n(bdmap)_2(OAc)_3(OH)_2(H_2O)][PF_6]$ has one-dimensional structure in the solid state and the Cu_4 planar units are linked together through intermolecular hydrogen bonds and Cu-O bonds. Compound 3 crystallizes in the triclinic crystal system, space group P1, a=13.289(6)Å, b=15.737(6)Å, c=13.214(5)Å, α =97.29(4)Å, β =96.24(4)Å, γ =103.77(3)⁻, Z=2. Compound 4 crystallizes in the triclinic crystal system, space group P1, a=13.34(1)Å, b=13.992(8)Å, c=11.726(8)Å, α =113.59(4)°, β =95.71(8)°, γ =74.54(7)°, Z=2. Compound 5 crystallizes in the monoclinic crystal system, space group P2₁/n, a=10.154(5)Å, b=12.712(4)Å, c=15.405(9)Å, β =99.05(6)°, Z=2.

A hexanuclear Cu(II) compound 6 has been characterized structurally with the formula $[Cu_6(bdmap)_2(OAc)_5(PyO)_2(PyOH)][PF_6]_2$. Compound 6 has a one-dimensional structure in the solid state. There are one Cu₂ and one Cu₄ unit in the Cu₆ compound which are linked together through covalent copper-oxygen bonds.

Dedicated to the memories of my wife and my parents

Acknowledgements

I would like to express my deep and sincere appreciation to my supervisor Dr. Suning Wang for getting me started at this Department, and for the encouragement and understanding I have received throughout my work. I am especially thankful to the Chemistry Department of the University of Windsor which gave me this opportunity to come to Canada and to join this excellent research institution. I am indebted to the faculty for their kind attention and care over the years. I thank our technical staff, especially Mr. Mike Fuerth, for his kind and patient assistance.

Special thanks are due to Mr. David Hill who makes newcomers feel welcome. Finally I would like to acknowledge the Faculty of Graduate Studies for postgraduate awards and the Department of Chemistry for teaching assistantships.

> Jian-chuan Zheng Windsor Ontario January, 1993

vii

Table of Contents

Abstract		iv
Dedication		vi
Acknowledgements		vi
List of Figures		xi
List of Tables		xiii
List of Abbreviatio	ns	xiv
Chapter I	General Introduction	1
Chapter II	Dimeric and Trimeric Copper Compounds with	
	1,3-Bis(dimethylamino)-2-Propanol Ligand	6
II.1	Introduction	7
П.2	Experimental Section	8
Ш.2.1	Chemicals and Solvents	8
П.2.2	Synthesis of Cu ₂ (bdmapH) ₂ Cl ₄ 1	10
11.2.3	Synthesis of Cu ₃ (bdmap) ₂ Cl ₄ 2	10
	Method 1	10
	Method 2	11
П.2.4	Instruments	11
	Electrochemical Analyses	11
	X-ray Diffraction Analysis	11
п.з.	Results and Discussion	12
	Dimeric Copper(II) compound Cu ₂ (bdmapH) ₂ Cl ₄ 1	12

		Synthesis	12
		X-ray Crystal Structure	16
		IR Spectrum Analysis	22
		Magnetic Susceptibility	24
		Electrochemistry	25
		Trimeric Cu(II) compound Cu ₃ (bdmap) ₂ Cl ₄ 2	29
		Synthesis	29
		X-ray Crystal Structure	29
		Magnetic Susceptibility	37
		Electrochemistry	38
	II.4	Conclusion	42
Chapt	er III	Homonuclear Copper Complexes with a Cyclic Cu_4^{II} Unit	44
	III.1.	Introduction	45
	III.2.	Experimental Section	46
	ПІ.2.1.	Chemicals and Solvents	46
	III.2.2.	Synthesis of [Cu ₄ ^{ff} (bdmap) ₃ (OH)(OAc) ₂ (HOAc)(H ₂ O)][PF ₆] ₂ 3	49
	III.2.3.	Synthesis of [Cu ₄ ^{II} (bdmap) ₂ (OAc) ₃ (OH) ₂ (H ₂ O)][PF ₆] 4	49
	III.2.4.	Synthesis of $[Cu_4^{II}(bdmap)_2(OAc)_4][PF_6]_2 5$	50
		Method A	50
		Method B	51
		Method C	51
	III.2.5.	Synthesis of $[Cu_{6}(bdmapH)_{3}(OAc)_{5}(PyOH)(PyO)_{2}][PF_{6}]_{2}$ 6	51

-

. . .

I	II.2.6.	Instruments	52
		X-ray Diffraction Analysis	52
I	11.3.	Results and Discussion	53
		$[Cu_4(bdmap)_3(OH)(OAc)_2(HOAc)(H_2O)][PF_a]_2 3$	53
		Synthesis	53
		X-ray Crystal Structure	54
		IR Spectrum Analysis	62
		$[Cu_4(bdmap)_2(OAc)_3(OH)_2(H_2O)][PF_6] 4$	64
		Synthesis	64
		X-ray Crystal Structure	65
		IR Spectrum Analysis	72
		$[Cu_4(bdmap)_2(OAc)_4][PF_6]_2 5$	74
		Synthesis	74
		X-ray Crystal Structure	75
		'H NMR Spectrum	79
		IR Spectrum Analysis	82
		$[Cu_{6}(bdmap)_{3}(OAc)_{5}(PyOH)(PyO)_{2}][PF_{6}]_{2}6$	82
		Synthesis	85
		X-ray Crystal Structure	86
		IR Spectrum Analysis	88
I	II.4.	Conclusion	88
Reference	œs		91

X

•

List of Figures

1.	Structure of bdmapH Ligand	9
2.	Structure of Cu ₂ (bdmapH) ₂ Cl ₄ 1	19
3.	IR Spectrum of Cu ₂ (bdmapH) ₂ Cl ₄	23
4.	Magnetic Susceptibility of X_m vs T, X_m^{-1} vs T	26
5.	Magnetic Susceptibility of $X_m T$ vs T	27
6.	Diagram of CV of Cu ₂ (bdmapH) ₂ Cl ₄	28
7.	Types of Trinuclear Copper(II) Complexes	30
8.	Structure of Cu ₃ (bdmap) ₂ Cl ₄ 2	31
9.	Structure of Trinuclear Cu(II) Complexes with General	
	Formula $[Cu_3O(ligand)_3]^+$ or $[Cu_3(OH)(ligand)_3]^{2+}$	35
10.	Magnetic Susceptibility of X_m vs T, X_m^{-1} vs T	39
11.	Magnetic Susceptibility of $X_m T$ vs T	40
12	Diagram of CV of Cu ₃ (bdmap) ₂ Cl ₄	41
13	Diagram of DPV of Cu ₃ (bdmap) ₂ Cl ₄	43
14.	1-2-3 Superconductor Structure	47
15.	Structure of Compound 3	55
16.	IR Spectrum of compound 3	63
17.	Structure of compound 4	66
18.	One Dimensional Structure of Compound 4	71
19.	IR Spectrum of Compound 4	73

20.	Cation Structure of Compound 5	76
21.	Interaction of the PF_{6}^{-1} Anion with the Cation of Compound 5	80
22.	¹ H NMR Spectrum of Compound 5	81
23.	Cu ₄ Unit Structure of $[Cu_4(bdmap)_2(OAc)_2(OH)_2][Hg(OAc)Cl_2]_2[HgCl_2]$	83
24.	IR Spectrum of Compound 5	84
25.	Structure of Compound 6	87
26.	IR Spectrum of compound 6	89
Scheme 1.	Proposed Reaction Mechanism of Cu ₂ (OCH ₂ CH ₂ NR ₂) ₂ X ₂	14
Scheme 2.	Proposed Reaction Mechanism of Cu ₂ (bdmapH) ₂ Cl ₂	15
Scheme 3.		48

xii

List of Tables

1.	Summary of Known Structures of Cu(OC ₂ H ₄ NR ₂)X	18
2.	Bond Distances of Cu ₂ (bdmapH) ₂ Cl ₄ 1	20
3.	Bond Angles of Cu ₂ (bdmapH) ₂ Cl ₄ 1	21
4.	Bond Distances of Cu ₃ (bdmap) ₂ Cl ₄ 2	33
5.	Bond Angles of Cu ₃ (bdmap) ₂ Cl ₄ 2	34
6.	Selected Bond Distances of Compound 3	56
7.	Bond Angles of Compound 3	58
8.	Bond Distances of Compound 4	67
9.	Bond Angles of Compound 4	68
10.	Bond Distances of Compound 5	77
11.	Bond Angles of Compound 5	78

·

٠

List of Abbreviations

acmpzH:	1-(1-ethanoyl)-5-methylpyrazole
bdmap:	1,3-bis(dimethylamino)-2-propanol
bdmapH:	1,3-bis(dimethylamino)-2-propanolato
calcd.:	calculated
CV:	cyclic voltammogram
dbae:	2-dibutylaminoethanolato
dbaeH:	2-dibutylaminoethanol
deae:	2-diethylaminoethanolato
deaeH:	2-diethylaminoethanol
depo:	1,2-diphenyl-2-(methylamino)ethanone-1-oxime
DMF:	dimethylformamide
DPV:	differential pulse voltammetry
dec.:	decomposition
IR:	infrared
J _c :	critical current
MOCVD:	metal-organic chemical vapour-phase decomposition
m.p.:	melting point
mpzH:	3(5)-methylpyrazole
NMR:	nuclear magnetic resonance
T _c :	critical temperature
THF:	tetrahydrofuran

xiv

Chapter I

.

•

General Introduction

High-temperature superconductors, hetero-polymetallic oxide materials, have attracted considerable attention since the first group of high-temperature superconductors discovered¹⁻² by Bednorz and Mueller were oxides of the type La_{2.x}(Ca,Sr,Ba)_xCuO₄ with T_c (critical temperature) values in the 25-40K range, soon followed by the so called 1-2-3 oxides of the general formula LnBa₂Cu₃O₇ (Ln=Y, Nd, Sm, En, Gd, Dy, Ho, or Yb) with T_c values in the 90K region.³⁻³ The discovery of materials with superconductivity above liquid nitrogen temperature has raised much hope and has promoted an intensive search for new classes of oxides belonging to the Bi-Ca-Sr-Cu-O and TI-Ca-Ba-Cu-O systems and possessing the general formula A₂Ca_{n+1-x}B_xCu_nO_{2n+4} where A=Bi or TI and B=Sr or Ba have been found to exhibit superconductivity between 60 and 125K.⁷²⁰ A few members of the series (n=1-3) of oxides have been characterized adequately, although there has been some difficulty in obtaining pure phase, especially in the bismuth cuprate system. Recently, superconducting lead cuprates of the type PbASr₂Cu₃O₄ (A=Ln or Ln+Ca) have been discovered.²¹

Traditional ceramic methods require high-temperature processing, often in excess of 1000°C, in order to achieve intimate mixing of metal sources. High-temperature processing can be undesirable for many reasons, including (i) increased energy cost, (ii) inability to gain access to metastable phases present at milder temperatures and (iii) difficulty of control of the stoichiometry.^{22,30} In contrast, routes based on soluble precursors, which can be spun or dipped into films, appear attractive for a variety of reasons; low expense, the ability to coat large unusually shaped objects, and high homogeneity and purity.³¹ Recently MOCVD (metal organic

chemical vapour-phase deposition) and sol-gel methods have been used in the preparation of superconductors by chemical processes using soluble and volatile precursors. The sol-gel technique has been used for many years for producing oxide glasses and ceramics.³²⁻³⁶ The basic procedure of the sol-gel process is to form a solution of the elements of the desired compound in an organic solvent. The solution is then polymerized to form a gel. This gel is dried and fired to displace the organic components and form the final inorganic oxide.

There are essentially two different kinds of sol-gel technology. The first method involves the dispersion of colloidal particles in a liquid to form a sol to produce a gel. The second method involves the polymerization of organometallic compounds such as alkoxides. The chemical sol-gel process related to high T_c superconductors is based on organometallic precursors. Materials which are used in modern ceramic and device technology require high purity and precise control of composition and microstructure. Since the chemical reactants for sol-gel processing can be purified conveniently by distillation and crystallization, films of high purity can be fabricated by sol-gel processing.

In sol-gel processing, chemicals for preparing films are dissolved in a liquid to form a solution. Since all the starting materials are mixed at the molecular level, a high degree of homogeneity of film can be expected. The pores in properly dried gels are often extremely small and the components of a homogeneous gel are intimately mixed. This allows lower processing temperatures for sol-gel-derived ceramics. This can be important in compositions which undergo undesired phase transitions or have volatile components, or which exist in structures undergoing

undesired diffusion or compositional changes at higher temperature. Another advantage of sol-gel processing is that, because of the solution form of the raw materials, trace elements can be easily introduced into the solution by adding the elements in the form of organometallic compounds or soluble organic or inorganic salts. Such trace elements can improve the properties of oxide films. The viscosity, surface tension, and concentration of the organometallic polymeric solution can be easily adjusted. Large-area films or coatings of desired composition can be easily formed in a substrate of complex geometry. The methods of application of the film can be by dipping. spinning, spraving, or even painting. This allows for tailoring the process to specific requirements. Meanwhile volatile metal alkoxides offer several attractions as precursors for the deposition of metal oxides by MOCVD technique³⁷. MOCVD techniques present an alternative vapour phase approach to the preparation of thin metal-oxide films and, in principle, offer the advantages of simplified apparatus, excellent film uniformity, compositional control, high deposition rates, and the potential to develop large scale processing.⁴² The films and fibres of high temperature superconductors obtained by the two methods have been reported.^{22-23,38-41,43} A few papers described attempts to isolate and characterize intermediates. Studies have shown that properties of the rare earth superconductors are highly sensitive to processing conditions. Metal nonstoichiometry and some boundary impurities sharply decrease the critical temperature (T_c) and the critical current (J₂) of the materials.²²⁻²⁹ Clearly, chemical control of the species present in precursor solutions will enhance the ability to control the homogeneity and stoichiometry. Chemical processing makes it possible to obtain high T_e superconductors at much lower temperature than the conventional methods. At present, homonuclear or heteronuclear soluble aggregates incorporating metals relevant to superconductors (i.e. heavy alkali and/or alkalineearth metals, lanthanides and copper) constitute a synthetic challenge. Only a few examples have been reported recently.^{38,41,43} Furthermore, yttrium and lanthanide metal chemistry remains poorly developed.⁴²⁻⁴⁶ Three different metallic precursors are required for the YBa₂Cu₃O_{7-x} high Tc superconductor and even more source precursors are needed for systems such as the Tl-Ba-Ca-O or Bi(Pb)-Sr-Ca-O.^{30,38,47-56}

It has been well established that, for obtaining superconductors by MOCVD and sol-gel techniques, use of a "single-source" including homometallic and heterometallic precursors in which heavy elements are associated in an appropriate ratio increases the quality of the final material. Therefore, one of today's challenges is to build homonuclear or heteronuclear precursor sources to meet the requirements of MOCVD and sol-gel techniques. In addition, none of the superconducting theories have given satisfactory explanations of the superconducting mechanisms. The physical and chemical properties of superconductors could be understood by the study of molecular model complexes. The goal of this thesis is to synthesize new polynuclear copper(II) complexes with 1,3-bis(dimethylamino)-2-propanol ligand (bdmapH) and to study physical and chemical properties of these compounds.

Chapter II

Dimeric and Trimeric Copper Compounds with

1,3-Bis(dimethylamino)-2-Propanol Ligand

.

II.1. Introduction

There is much interest in the investigation of homonuclear copper alkoxide complexes stimulated by the possible applications in MOCVD and chemical sol-gel processes.^{37-38,43,57-63} Until recently, efforts to prepare cuprate-oxide superconductors from alkoxide-precursor solutions suffered from the lack of soluble copper(II) precursors.^{64-68,71} In order to synthesize new soluble Cu(II) precursor compounds for high temperature superconductors, the choice of ligand is very important. One of the largest and most important groups of ligands is that in which the coordination to the metal ion occurs through the oxygen atom. If the oxygen atom is bonded to carbon, the resulting complexes may be divided into two classes. In the first class are complexes such as metal carboxylates, carbonates etc., which are usually stable to air and moisture and can be obtained readily. In the second class are metal alkoxides which generally have low stability to moisture and air and require the use of oxygen-free and moisture-free synthetic techniques. This restricts the range of complexes which may be prepared.^{42,72} As reported in several reviews, alkoxides can be excellent precursors for the chemical vapour deposition (CVD) or sol-gel production of various metal oxide products.³⁷⁻³⁸ One successful approach to improving solubility and volatility of precursor compounds involves the use of multidentate alkoxy ligands. For example, Cu(OCH₂CH₂OCH₂CH₂OMe)₂⁶⁰, Cu(OCH₂CH₂OBu)₂⁶¹, Ba(OCH₂CH₂OBu)₂⁶³ are soluble in a range of organic solvents and Cu(OCHMeCH₂NMe₂)₂⁶² is one of the most volatile copper(II) alkoxides known, subliming at 60°C under vacuum. The multidentate alkoxy ligands containing -OBu, -NEt₂ or -CF₃ groups appear to improve the solubility and volatility of precursor molecules to meet MOCVD and sol-gel requirements. The ligand used in this work is a multidentate amino alcohol ligand, 1,3-bis(dimethylamino)-2-propanol (bdmapH). The

structure of this ligand is shown Figure 1. There are two different coordinating centres with the deprotonated bdmapH ligand (bdmap), a neutral site and an anionic site. The bdmap ligand could combine polynuclear metal centres together through both coordination sites. As multidentate alkoxy ligands, the two $-N(Me)_2$ groups of bdmap could increase the solubility of metal alkoxides. In fact, a very soluble dimeric copper(II) compound, Cu₂(bdmap)(OAc)₃¹²⁴, has been synthesized by our group. It has been used successfully in the preparation of 1-2-3 high T_c superconductors by the sol-gel method. The heteronuclear species of Y-Cu, Nd-Cu, Pr-Cu and Ba-Cu have been successfully synthesized with the bdmapH ligand in our laboratory.

A new dimeric and a new trimeric copper(II) compound with 1,3-bis(dimethylamino)-2propanol ligand were prepared. The results are reported in this chapter.

II.2. Experimental Section

II.2.1. Chemicals and Solvents

All manipulations were carried out using standard Schlenk lines or a nitrogen-filled drybox. Tetrahydrofuran was distilled over sodium metal, and CH_2Cl_2 was distilled over P_2O_3 . They were stored under nitrogen prior to use. Anhydrous ethanol and diethyl ether were purchased from BDH. Cupric chloride was purchased from Fisher Scientific. Copper(II) methoxide and 1,3-bis(dimethylamino)-2-propanol were purchased from Aldrich Chemicals Co... Copper(II) methoxide was stored in the drybox.

CH Z 1,3-bis(dimethylamino)-2-Propanol CH CH H **I**E| <u>bdmapH</u> CH CH

HO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II.2.2. Synthesis of Cu₂(bdmapH)₂Cl₄ 1

A sample of CuCl₂ (500mg, 3.74mmol) was dissolved in THF (150ml) with stirring. Then 1,3-bis(dimethylamino)-2-propanol (540mg, 3.72mmol) was added dropwise to this solution. A light green crystalline solid formed immediately and precipitated from the solution. After being stirred for 1 h at room temperature, the solution was filtered. The bright green solid was washed with THF several times, collected and redissolved in ethanol. A clear green solution was obtained. Green crystals (620mg, 1.13mmol) were produced from a mixed solvent of ethanol and diethyl ether (60% yield, m.p. 137°C dec.). Elemental Analysis: calcd. $C_{14}H_{36}Cu_2Cl_4O_2N_4$; C%, 29.95; H%, 6.47; N%, 9.98. Found: C%, 29.82; H%, 6.70: N%, 9.67. IR (KBr, cm⁻¹): 3420 (m, N-H), 1150 (m, C-O).

II.2.3. Synthesis of Cu₃(bdmap)₂Cl₄ 2

Method 1: A sample of the dimeric Cu(II) compound, Cu₂(bdmapH)₂Cl₄ (50mg, 0.089mmol) was added into CH₂Cl₂ (10ml) and the solution was stirred. The sample was completely dissolved. A light green solution was obtained. Then Cu(OMe)₂ (12mg, 0.096mmol) was added to this solution. After the mixture was stirred for 1 h at 23°C, the blue solid, Cu(OMe)₂, disappeared completely and the colour of the clear solution became dark green. Then 10ml of diethyl ether was added to this solution to crystallize the product. After the mixture was allowed to stand at 23°C for 2-3 days, dark green crystals were obtained (dry weight 25mg, 0.0402mmol, 45% yield, m.p. 163-165°C dec.). Elemental Analysis: calcd. for C₁₄H₃₆Cu₃Cl₄O₂N₄, C%, 26.99; H%, 5.50; N%, 9.00. Found: C%, 27.07; H%, 5.48; N%, 8.72.

Method 2: CuCl₂ (135mg, 1mmol) was dissolved in THF (75ml). Na(bdmap) (168mg, 1mmol) was then added this solution. The mixture was stirred overnight at 23°C. Dark green solid precipitated and was collected by filtration. After being washed with ethanol (20ml), the dark green solid was recrystallized from CH₂Cl₂ (25ml) and diethyl ether (10ml). A yield of 86mg (dry weight, 41%) of trimeric copper(II) compound was obtained.

II.2.4. Instruments

Elemental analyses were carried out at the Guelph Chemical Laboratories Ltd.. Infrared spectra were recorded as KBr pellets using a Nicolet 5DX FT-IR spectrometer, the range of wavelength was from 400cm⁻¹ and 4000cm⁻¹. Melting points were determined on a Fisher-Johns melting point apparatus. Magnetic susceptibilities were measured on a SQUID device (S.H.F. variable-temperature susceptometer) at Michigan State University.

Electrochemical Analyses: A Potentiostat 273A electrochemical analyzer was used. Cyclic and differential pulse voltammograms (DPV) were obtained with a platinum working electrode and a platinum wire counter electrode. An Ag-AgCl electrode served as the reference electrode in all cases. The cyclic and differential pulse voltammograms of 0.7 M solution of 1 was recorded with 3.1 M NBu₄PF₆ in dimethylformamide (DMF) at scan rate of 0.05 vs⁻¹. The cyclic and differential pulse voltammograms of 0.6 M solution of 2 was recorded with 3.1 M NBu₄PF₆ in DMF at scan rate of 0.05 vs⁻¹.

X-ray diffraction Analysis: Single crystals of 1 with rectangular shapes were grown by

slow diffusion of diethyl ether into the CH_2Cl_2 solution of 1 at 23°C. Dark green single crystals of 2 were obtained from the solution of CH_2Cl_2 and diethyl ether at 23°C. Both crystals were mounted on glass fibres and sealed with epoxy glue. Data were collected on a Rigaku AFC6-S diffractometer with graphite-monochromated Mo K_w radiation and processed on a VAX workstation 3520 using the TEXSAN crystallographic (version 5.0). Data were corrected for Lorentz-polarization and absorption effects. The X-ray diffraction analyses were performed by Dr. Wang.

II.3. Results and Discussion

The Dimeric Copper(II) Compound Cu₂(bdmapH)₂Cl4 1

Synthesis: The dimeric copper(II) compound 1 was initially isolated from the reaction of $Ba(bdmap)_2$, $CuCl_2$ and bdmapH in a 1:1:1 ratio. The reaction of $CuCl_2$ and bdmapH in a 1:1 ratio was subsequently designed for the direct synthesis of the dicopper compound 1. The reaction is shown in equation (1).

 $2CuCl_2 + 2bdmapH \rightarrow Cu_2(bdmapH)_2Cl_4$ (1)

The starting materials in equation (1) were directly dissolved in C_2H_3OH or CH_2Cl_2 for the synthesis of compound 1. In order to increase the yield in equation (1), a slightly excess of bdmapH was added to the solution of $CuCl_2$ in THF. The CuCl_2 then reacted completely with bdmapH to produce the compound 1 in THF. The excess bdmapH was removed by filtration. The syntheses of a wide variety of compounds of the types CuCl(OR) and CuBr(OR), where ROH is an amino alcohol, have been reported by Hein and coworkers.⁸⁹⁻⁹⁰ They postulated that the complexes should be formulated as dimers in which the amino alcohol ligands (HOCH₂CH₂NR₂) act as a chelating bridge, and this had been confirmed by the report⁹¹ of the structure of bromo-(2-diethylaminoethanolato) copper(II). In addition, Hein also proposed the mechanism of the dimer formation as shown in scheme 1.

In the synthesis of $Cu_2(deae)_2Cl_2^{134}$ (deae = 2-diethylaminoethanolato), $CuCl_2$ was dissolved in absolute alcohol and then 2 equivalents of deaeH was added to the solution. It was proposed that the intermediate mononuclear copper(II) complex, $Cu(deaeH)Cl_2$, formed initially. The HCl in Cu(deaeH)Cl₂ was subsequently eliminated by an intermolecular elimination reaction. The HCl formed an adduct with the excess amino alcohol ligand to produce an ammonium salt. Finally, the two mononuclear copper(II) molecules combine together to form a dimeric copper(II) molecule.

In this case, the bdmapH ligand is different from the deae ligand mentioned above. There is one more nitrogen coordination centre in bdmapH than in the deae ligand which is capable of accepting one proton. The formation mechanism of compound 1 (dizwitterion) was proposed as shown in scheme 2. Reaction of 1,3-bis(dimethylamino)-2-propanol (bdmapH) with CuCl₂ in 1:1 ratio in pure THF or ethanol could yield a monomeric Cu(II) compound first. Because there is no additional bdmapH ligand in the solution to remove HCl by an intermolecular elimination reaction and the second nitrogen group in bdmap may have a steric chemical effect preventing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HCl elimination through the intermolecular process, the proton of the hydroxy group on the bdmapH ligand could shift to the nitrogen atom in the same bdmapH ligand by intramolecular process to produce a zwitterion monomer Cu(II) unit. The negative charge is located on the oxygen atom and the positive charge is on the Cu atom in the monomer. The two monomers could then be combined together to yield the dimer by Coulomb attraction and the formation of additional Cu-O bonds. It is apparent that if the protons in 1 could be removed by adding another base to the solution, an additional coordination site would be created which might be used to incorporate the third metal centre. This has been demonstrated by the formation of a trinuclear copper compound from the reaction of $Cu_2(bdmapH)_2Cl_4$ with $Cu(OMe)_2$ in a 1:1 ratio. Although this dimeric Cu(II) compound 1 has not been used as a precursor in the preparation of high T_c superconductors by MOCVD or sol-gel methods. It can be shown that the dimeric Cu(II) compound is a very good starting material in the syntheses of homonuclear copper(II) complexes.

X-ray Crystal Structure: Dinuclear complexes form a major group of Cu(II) complexes for the following reasons:³¹ (i) they can be prepared readily by the usual methods used in preparing monomeric complexes; (ii) they provide useful simple models for the study of magnetic interaction of two unpaired d electrons;³⁴⁻³⁶ and (iii) they are useful models of the biological copper systems.³⁷⁻⁸⁸

Different types of structures of Cu(II) complexes with amino alcohol ligand have been found. The structures of $[CuX(OCH_2CH_2NR_2)]_a^{75}$ (X=Cl, Br, NCS, or NCO; R=Me, Et, Pr⁴,

or Buⁿ) compounds are comparable. A summary of all investigated crystal structures of halogeno- and pseudohalogeno-(2-dialkylaminoethanolato) copper(II) complexes is presented in Table 1. For convenience in comparison, two complexes in Table I are chosen. They are $[Cu_2(deae)_2Cl_2]_2^{134}$ and $Cu_2(dbae)_2Br_2^{138}$ (dbae = 2-dibutylaminoethanolato). These compounds were obtained by the reaction of CuX_2 with two moles of deaeH or dbaeH ligands.

The molecular structure of dimeric copper compound 1 is shown in Figure 2. The molecular bond distances and angles are given in Table 2 and Table 3, respectively. Compound 1 has a two fold axis (C2) and consists of two copper atoms, four chlorine ligands, and two bdmapH ligands. The two protons are shifted to two nitrogen atoms in two bdmap ligands by an intramolecular chemical process, and the protons remain in the molecule. In contrast, the protons in amino alcohol ligands (deaeH and dbaeH) migrated to the solution by an intermolecular chemical process. Each Cu atom in 1 is coordinated by two chlorine atoms, one nitrogen atom and is bridged to the other Cu atom by two oxygen atoms. The coordination geometry around Cu atom is, therefore, a distorted square pyramid with Cl(1) as a weakly coordinated axial ligand. Cu-Cl(1) of 2.530(1)Å is much longer than the Cu-Cl distances of 2.235(2)Å and 2.225(3)Å in [CuCl(deae)]₄. Cu-Cl(2) distance of 2.288(1)Å in 1 is normal.⁶⁹ Such distorted square-pyramidal geometry has been observed in [CuCl(deae)]. The Cu geometry in [CuBr(dbae)]₂ is approximately tetrahedral. Cu-O and Cu-O'distances of 1.980(3)Å, 1.959(3)Å in 1 are normal, similar to Cu-O distance in [Cu(dbae)Br]₂ and [Cu(deae)Cl]₄. The Cu-Cu distance, 2.847(1)Å, is shorter than Cu-Cu distances of 2.931(1)Å, 2.940(2)Å in [Cu(deae)Cl₂]₂. The Cu-O-Cu angle is 92.6(1)° in the dimeric Cu₂(bdmapH)₂Cl₄ but 97.6(3)° and

Table 1. Summary of all known ctystal structures of Cu[(OC₂H₄NR₂)X] complexes (R=CH₃, C₂H₅, n-C₃H₇, n-C₄H₈; X=Cl, Br, NCO and NCS)

R	x	Molecular Yype	References
C 11		Tomorio	121
CH ₃	NCO	regamenc	151
	NCS	Polymeric	133
C ₂ H ₅	Cl	Tetrameric	134
	Br	Dimeric	135
		Polymeric	136
	NCO	Tetrameric	130
	· NCS	Polymeric	129
n-C3H7	Ci ·	Tetrameric	128
n-C₄H ₉	α	Tetrameric	137
	Br	Tetrameric	137
		Dimeric	138
	NCO	Tetrameric	132
	NCS	Tetrameric	132

atom	atom	distance	atom	atom	distance
Cu	Cu	2.847(1)	N(2)	C(2)	1.476(6)
Cu	Cl(1)	2.530(1)	N(2)	C(6)	1.470(6)
Cu	Cl (2)	2.288(1)	N(2)	C(7)	1.476(6)
Cu	0	1.980(3)	C(1)	C(2)	1.524(6)
Cu	0	1.959(3)	C(1)	C(3)	1.516(6)
Cu	N(2)	2.041(4)	C(8)	C(9)	1.386(8)
0	C(1)	1.398(5)	C (8)	C(9)	1.386(8)
N(1)	C(3)	1.494(6)	C (9)	C(10)	1.41(1)
N(1)	C (4)	1.488(6)	C (9)	C(12)	1.39(1)
N(1)	C(5)	1.483(6)	C(10)	C(11)	1.25(2)
N(1)	H(21)	1.001			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

20

.

Table 3

Bond Angles of Cu₂(bdmapH)₂Cl₄

atom	atom	atom	angle	atom	atom	atom	angle
Cu	Cu	Cl(1)	126.93(3)	C(3)	N(1)	C(5)	113.7(4)
Cu	Cu	C1(2)	112.05(4)	C(4)	N(1)	C(5)	110.2(4)
Cu	Cu	0	43.42(8)	Cu	N(2)	C(2)	103.4(3)
Cu	Cu	0	44.02(8)	Cu	N(2)	C(6)	109.5(3)
Cu	Cu	N(2)	113.6(1)	Cu	N(2)	C(7)	114.9(3)
Cl(1)	Cu	C1 (2)	104.76(5)	C(2)	N(2)	C(6)	110.3(4)
Cl(1)	Cu	0	105.59(9)	C(2)	N(2)	C(7)	109.5(4)
Cl (l)	Cu	0	95.74(9)	C(6)	N(2)	C(7)	109.1(4)
Cl (1)	Cu	N(2)	98.5(1)	0	C(1)	C(2)	108.0(3)
Cl (2)	Cu	0	149.4(1)	0	C(1)	C(3)	108.5(4)
Cl (2)	Cu	0	97.27(9)	C(2)	C(1)	C(3)	109.8(4)
Cl (2)	Cu	N(2)	96.1(1)	N(2)	C(2)	C(1)	110.3(4)
0	Cu	0	75.8(1)	N(l)	C(3)	C(1)	112.6(4)
0	Cu	N(2)	83.3(1)	C(9)	C(8)	C(9)	117.3(9)
0	Cu	N (2)	157.3(1)	C(8)	C(9)	C(10)	117.9(8)
Cu	0	Cu	92.6(1)	C(8)	C(9)	C(12)	133.2(9)
Cu	0	C(1)	115.2(2)	C(10)	C(9)	C(12)	109(1)
Cu	0	C(1)	132.8(3)	C(9)	C(10)	C(11)	122 (2)
C(3)	N(1)	C(4)	111.0(4)	C(10)	C(11)	C(10)	123 (2)
C(3)	N(1)	H(21)	108.03	C(4)	N(1)	H(21)	105.08
C(5)	N(1)	H(21)	108.50				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

.

95.7(2)° in the bottom and top halves of the tetrameric [Cu(deae)Cl]₄ and 104.5(4)° in dimeric of [Cu(dbae)Br]₂. The Cu-N(2) distance of 2.041(4)Å is similar to the Cu-N distances of 2.057(7)Å and 2.072(7)Å in [CuCl(deae)]₄ and the value of 2.036Å in [Cu(dbae)Br]₂. The Cu₂O₂ unit in 1 is nonplanar. The dihedral angle between the planes of Cu-O-Cu and Cu-O-Cu is 125.5°. However, the Cu₂O₂ unit of [Cu(deae)Cl]₄ and [Cu(dbae)Br]₂ is approximately planar. The two bdmapH ligands in compound 1 have a cis configuration with respect to the Cu-Cu' vector.

The most interesting feature of this dimeric molecule, $Cu_2(bdmapH)_2Cl_4$, is the dizwitterion form. The hydrogen atom H(21) bonded to N(1) is located directly from a difference Fourier map in the X-ray crystal structure analysis. The H(21) atom is more than 4Å from the Cl(1) and Cl(2) atoms. Therefore, no hydrogen bonds are present between H(21) and the chlorine atoms. Although the distance of N(1) to O, 2.908Å, is close to the sum of the Van der Waals radii⁷⁶ of O and N atoms (2.945Å), H(21) is 2.51Å from O, and the N(1)-H(2)-O angle 103.0° is nonlinear. Therefore, no intramolecular hydrogen bonds are present.⁷⁷⁻⁷⁹ Crystallographic data also indicates that there are no intermolecular hydrogen bonds. The proton bonded originally to the oxygen atom is apparently shifted to the nitrogen atom, and an intramolecular ammonium ion, zwitterion, is formed.

IR Spectrum Analysis: The IR spectrum of compound 1 is given in Figure 3. It is known from X-ray crystal structure analysis that there are N-H bonds in compound 1. The IR spectrum of the complex displayed a medium-intensity sharp band at 3420cm⁻¹, which is assigned

to the N-H stretching vibration. The frequency of the N-H stretching vibration, 3420cm⁻¹, is higher than the normal value range 3350-3300cm^{-1,93}(secondary-RHN). Because the ammonium group is positively charged, it increases the N-H bond strength and hence shifts the band to a higher frequency in comparison with the secondary amine. It is also evident that hydrogen bond is not present. The absorption band at around 1150cm⁻¹ is assigned to the C-O stretching vibration. Some absorption bands observed in the 900-400cm⁻¹ region could be caused by metaloxygen vibrations.⁹⁶ The similar absorptions resulting from metal-oxygen vibrations in copper(II) acetylactonates have been observed at 700-400cm⁻¹ (three bands 684cm⁻¹, 654cm⁻¹, 455cm⁻¹) by Morgan⁹⁵ and Lecomte.⁹⁶

Magnetic Susceptibility: The summary shown in Table 1 indicates that different types of structures of $[CuX(OCH_2CH_2NR_2)]_a$ in the solid state have been confirmed. Ail of these molecular structures contain an oxygen-bridged dimeric unit. However, different molecules exhibit different intra- and inter- molecular magnetic interactions between the individual copper(II) ions. Uhlig and Staiger have studied the room-temperature magnetic properties of a number of compounds of this type¹²²⁻¹²³ and deduced that they may be divided into three distinct groups according to their magnetic moments: (1) compounds with greatly reduced moments at 20°C (less then 1 BM); assumed to be oxygen-bridged dimer; (2) compounds with normal magnetic moments; in this case the copper atom probably has a coordination number greater than 4; (3) compounds with only slightly reduced moment at 20°C (about 1.5 BM); it was suggested that these complexes might be tetrameric.⁷⁴ The molar susceptibility (X_m) and the reciprocal molar susceptibility (X_m) of the dimer $Cu_2(bdmapH)_2Cl_4$ as a function of temperature is shown in Figure 4. The susceptibility decreases with increasing temperature and it decreases rapidly at low temperature range of 5-20K. No maximum in the investigated temperature range was observed. This may be caused by the small energy gap between the singlet ground state and the triplet excited state. The magnetic moment $(\propto \sqrt{X_mT})$ of compound 1 increases with increasing temperature as is demonstrated by the plot of X_mT vs T for compound 1 shown in Figure 5. The magnetic moment is 1.56 BM at room temperature. This may be caused by the change from a ground singlet state to an excited triplet state. This behaviour is in accordance with an antiferromagnetic exchange interaction. Many dicopper(II) compounds display antiferromagnetic coupling behaviour.⁶⁹ The magnetic moment of compound 1 at room temperature belongs to type III mentioned above, but the structure of compound 1 does not match type III.

Electrochemistry: The dimeric compound 1 was studied by the technique of cyclic voltammetry. The cyclic voltammogram (CV) of 0.7 M solution of 1 was recorded with 3.1 M NBu₄PF₆ in DMF at a scan rate of 0.05 vs⁻¹. The diagram of the CV of compound 1 is shown in Figure 6, which displayed an irreversible feature. The reduction of $Cu^{II} \rightarrow Cu^{I}$ appeared to occur at about -0.35V, because the standard electrode potentials (V) of the Cu^{II}/Cu^{I} have been reported in the range of -0.35-1.12.⁶⁹ The reduction of $Cu^{II} \rightarrow Cu^{\circ}$ usually occur at a more negative potential than -0.35V, and the oxidation of $Cu^{II} \rightarrow Cu^{III}$ usually occur at a more positive potential than zero.¹³⁹

Figure 4 Magnetic Susceptibility of X_a vs T, X_a⁻¹ vs T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Trimeric Copper(II) compound, Cu₃(bdmap)₂Cl₄ 2

Synthesis: By comparing the structures of $Cu_2(bdmapH)_2Cl_4$ 1 and $Cu_2(deae)_2Cl_2$, it has been proposed that the protons in the bdmapH ligand of $Cu_2(bdmapH)_2Cl_4$ 1 could be removed by certain bases by an intermolecular process. To test this proposal, the reaction of $Cu_2(bdmapH)_2Cl_4$ 1 and $Cu(OMe)_2$ in a 1:1 ratio in method 1 was designed. $Cu(OMe)_2$ can remove 2 moles of proton to form 2 moles of HOMe. An additional coordination site is presumably created to incorporate the third Cu(II) centre. As a result, the trimer, $Cu_3(bdmap)_2Cl_4$ 2, was isolated from the reaction shown in equation (2). $Cu_2(bdmapH)_2 + Cu(OMe)_2 \rightarrow Cu_3(bdmap)_2Cl_4 + 2HOMe$ (2)

The compound 2 was also obtained by the reaction of $CuCl_2$ and Na(bdmap) in a 3:2 ratio in method 2. The equation is shown in (3).

 $3CuCl_2 + 2Na(bdmap) \rightarrow Cu_3(bdmap)_2Cl_4 + 2NaCl$ (3)

Since the salt of NaCl was coprecipitated with $Cu_3(bdmap)_2Cl_4$ in THF, the yield in method 2 was slightly lower than the yield in method 1.

X-ray Crystal Structure: Trinuclear copper(II) complexes are far less common than dinuclear copper(II) systems and limited to only three types,^{\$1} which are shown in Figure 7. The three types are 1) non-linear, 2) triangle, 3) linear. Compound 2 was crystallized from CH_2Cl_2 solvent and contains 1 equivalent of CH_2Cl_2 per molecule. The CH_2Cl_2 molecule was very readily lost in air. Despite the poor quality of the crystal of 2, the crystal structure of 2 was still determined by X-ray diffraction. The molecular structure is given in Figure 8 and the bond

•

distances and angles are given in Table 4 and Table 5, respectively. As shown in Figure 8, the trinuclear copper(II) compound 2 contains a triangular Cu_3 unit. An oxygen atom is located in the triangular Cu_3 centre and bonded to three copper(II) atoms.

In accord with the three types of trinuclear copper(II) complexes (Figure 7), the compound 2 belongs to type II. Trinuclear copper(II) compounds of type II with the general $[Cu_3O_0(OH)_{1,p}(ligand)_3]X_{2,p}$ (p=0 or 1; X=ClO₄ or SO₄²; formulation of ligand=RNC(R')C(R')NO; R=Et, n-Pr, n-Bu, Ph; R'=Me, Ph) have been reported.⁹⁴⁻¹⁰³ In general, the complexes isolated contain both Cu₃O and Cu₃OH cores held by three peripheral oximato bridges of the ligand. Their crystal structures were fully characterized by X-ray structure analyses as shown in Figure 9a and coordinated ligands are shown in Figure 9b, 9c and 9d. Furthermore, a μ_1 -carbonate-bridged trinuclear copper(II) cluster has also been reported,¹⁰⁴ and it belongs to type II. However, the structure of compound 2 is very different from the structures of Cu₃ species shown in Figure 9a. For example, in the trinuclear copper(II) specie $[Cu_3OH(PL)_3]SO_4$, HPL = the bidentate pyridine-2-carbaldehyde ligand,¹⁰⁵ the three copper atoms are held together by the oximate group (=N-O) as three bridges between two copper ions through the imino nitrogen and the deprotonated oxygen. The molecule of [Cu₃(OH)(PL)₃]SO₄ has C_{3v} symmetry. The oxygen atom of the hydroxy group is situated on the three-fold axis about which the trinuclear unit is centred and bonded to three Cu atoms, so that it is 1.98(1)Å from each of the copper atoms and 0.697(15)Å above the plane passing through the three metal atoms. The geometry of each copper atom is an approximate tetragonal pyramid. In contrast, the O(1) atom in one bdmap ligand in 2 is bonded to three Cu ions. The Cu(1) and

atom	atom	distance	atom	atom	distance
Cu(1)	Cl(1)	2.214(6)	N(1)	C(1)	1.47(2)
Cu(1)	0(1)	2.20(1)	N(1)	C(4)	1.43(3)
Cu(1)	0(2)	1.90(1)	N(1)	C(5)	1.48(3)
Cu (1)	N(1)	2.28(1)	N(2)	C(3)	1.47(3)
Cu(1)	N(4)	2.03(2)	N(2)	C(6)	1.39(3)
Cu (2)	Cl (2)	2.276(5)	N(2)	C(7)	1.44(3)
Cu (2)	Cl (3)	2.197(5)	N(3)	C(8)	1.45(2)
Cu (2)	0(1)	1.93(1)	N(3)	C(11)	1.47(2)
Cu (2)	N(2)	2.08(2)	N(3)	C(12)	1.48(2)
Cu (3)	Cl(4)	2.211(6)	N(4)	C(10)	1.46(2)
Cu (3)	0(1)	2.02(1)	N(4)	C(13)	1.47(3)
Cu (3)	0(2)	1.91(1)	N(4)	C(14)	1.46(3)
Cu (3)	N(3)	2.01(1)	C(1)	C(2)	1.44(2)
Cl(5)	C(15)	1.72(3)	C (2)	C(3)	1.28(3)
Cl(6)	C(15)	1.69(3)	C(8)	C(9)	1.49(3)
0(1)	C(2)	1.42(2)	C(9)	C(10)	1.54(3)
0(2)	C(9)	1.42(2)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

٠

atom	atom	atom	angle	atom	atom	atom	angle
Cl(1)	Cu(1)	0(1)	92.0(3)	Cu (2)	0(1)	C(2)	115(1)
Cl(1)	Cu(1)	0(2)	163.4(4)	Cu (3)	0(1)	C(2)	120(1)
Cl(1)	Cu(1)	N(1)	98.9(5)	Cu(1)	0(2)	Cu (3)	105.3(5)
Cl(1)	Cu(1)	N(4)	99.8(5)	Cu(1)	0(2)	C(9)	117(1)
0(1)	Cu(1)	0(2)	77.5(5)	Cu (3)	0(2)	C(9)	116(1)
0(1)	Cu(1)	N(1)	78.1(5)	Cu (1)	N(1)	C(1)	108(1)
0(1)	Cu (1)	N(4)	148.0(6)	Cu(1)	N(1)	C(4)	112(1)
0(2)	Cu(1)	N(1)	91.5(6)	Cu(1)	N(1)	C(5)	111(1)
0(2)	Cu(1)	N(4)	83.5(6)	C(1)	N(1)	C(4)	114 (2)
N(1)	Cu(1)	N(4)	128.3(7)	C(1)	N(1)	C(5)	106(2)
Cl (2)	Cu (2)	Cl(3)	95.4(2)	C(4)	N(1)	C(5)	107 (2)
Cl (2)	Cu (2)	0(1)	86.3(3)	Cu (2)	N(2)	C(3)	100(1)
Cl (2)	Cu (2)	N(2)	163.0(5)	Cu (2)	N(2)	C(6)	109(1)
Cl (3)	Cu (2)	0(1)	176.6(4)	Cu (2)	N(2)	C(7)	111(1)
Cl (3)	Cu (2)	N(2)	94.6(5)	C(3)	N(2)	C(6)	115(3)
0(1)	Cu (2)	N(2)	84.4(5)	C(3)	N(2)	C(7)	107 (2)
Cl (4)	Cu (3)	0(1)	97.7(4)	C(6)	ิง (2)	C(7)	113(2)
Cl(4)	Cu (3)	0(2)	158.4(4)	Cu (3)	N(3)	C(8)	105(1)
Cl (4)	Cu (3)	N(3)	101.1(6)	Cu (3)	N(3)	C(11)	112(1)
0(1)	Cu (3)	0(2)	82.1(5)	Cu (3)	N(3)	C(12)	108(1)
0(1)	Cu (3)	N(3)	161.3(6)	C(8)	N(3)	C(11)	111 (2)
0(2)	(3) ניכ	N(3)	80.5(6)	C(8)	N(3)	C(12)	113(1)
Cu(1)	0(1)	Cu (2)	109.4(5)	C(11)	N(3)	C(12)	108 (2)
Cu (1)	0(1)	Cu (3)	91.6(4)	Cu(1)	N(4)	C(10)	106(1)
Cu (1)	0(1)	C (2)	110(1)	Cu(1)	N(4)	C(13)	106(1)
Cu (2)	0(1)	Cu (3)	108.4(5)	Cu(1)	N(4)	C(14)	117(1)

Figure 9 Sturctures of Trinuclear Cu(II) complexes with General Formula [Cu₃O(ligand)₃]^{*} or [Cu₃(OH)(ligand)₃]²⁺

9a

Cu(3) ions are bridged by one additional oxygen atom O(2) from the second bdmap ligand. The

36

molecule of compound 2 lacks symmetry, because the coordination environments of the three copper atoms are different. Cu(1) is coordinated by one chlorine atom, two nitrogen atoms and two oxygen atoms. Its geometry could be described as a distorted square pyramid with a weakly bonded axial ligand N(1): N(1)-Cu(1)=2.28(1)Å. The Cu(2) atom is coordinated by two chlorine atoms, one nitrogen atom and one oxygen atom. The geometry of Cu(2) is square planar: N(2)- $Cu(2)-Cl(2) = 163.0(5)^{\circ}$ and $O(1)-Cu(2)-Cl(3) = 176.6(4)^{\circ}$. The Cu(3) atom is coordinated by one chlorine atom, one nitrogen atom and two oxygen atoms. The geometry around Cu(3) is approximate square-planar: O(1)-Cu(3)-N(3)=161.3° and O(2)-Cu(3)-Cl(4)=158.4(4)°. The distances of the central O(1) from the three Cu atoms are different because the coordination environment of each copper atom is different. The Cl(2) atom is 2.694(4)Å from Cu(3), which may be responsible for the small degree of distortion from square-planar geometry. The Cu(1)-Cu(3) distance of 3.027(4)Å is relatively shorter than the Cu(1)-Cu(2) distance of 3.378(4)Å and the Cu(2)-Cu(3) distance of 3.200(3)Å. It is also shorter than distances of 3.220(3)Å between two of the copper atoms in [Cu₃(OH)(PL)₃]SO₄. This is probably caused by the double bridges of oxygen atoms. Although each pair of Cu atoms are linked by double bridges in [Cu₃(OH)(PL)₃]SO₄, one of the bridges is through the imino nitrogen and the deprotonated oxygen. The oxygen atoms in the two bdmap ligands in 2 bridge two Cu atoms, Cu(1) and Cu(3), in a similar fashion as found in 1. However, the Cu-Cu distance of 2.847(1)Å is much shorter than the Cu(1)-Cu(3) distance of 3.027(4)Å and the Cu(1)-O(2)-Cu(3) angle of 105.3(5)° in 2 is much larger than the angle of 92.6(1)° in 1, apparently as a result of the increased crowding. Cu(1), O(1), Cu(3) and O(2) are approximately in the same plane. The dihedral angle between planes of Cu(1)-O(1)-Cu(3) and Cu(1)-O(2)-Cu(3) is 21.8°. This plane is nearly perpendicular to the plane of N(2)-O(1)-Cl(2)-Cl(3); dihedral angle = 80°. The Cu-N distances, except for Cu(1)-N(1), are in the range of 2.08-2.01Å, which are normal for Cu-N bond distances. The Cu(1)-O(2) distance of 1.90(1)Å and Cu(3)-O(2) distance of 1.91(1)Å are also normal. The Cu-Cl distances are 2.276-2.197Å in normal range of Cu-Cl bond distance.³¹

Magnetic Susceptibility: As mentioned above, trinuclear Cu(II) complexes are far less known than those of dinuclear Cu(II) systems and only three types have been identified (Figure 7). Trinuclear Cu(II) compounds in type II are dominated by the compounds of type $[Cu_3O(ligand)_3]X$ and $[Cu_3(OH)(ligand)_3]X_2$, the ligands are as shown in Figure 9b, 9c and 9d). It has been found that the oximate group (=N-O⁻¹) in these complexes generally mediates a strong antiferromagnetic spin exchange and a complete or nearly complete spin coupling has been observed in some cases even at room temperature. Compound 2, $Cu_2(bdmap)_2Cl_4$, is not a symmetric molecule, and the central oxygen atom in the bdmap ligand bridges three copper(II) atoms. The plots of the molar susceptibility (X_m) and the reciprocal molar susceptibility (1/X_m) of compound 2 vs temperature (K) are shown in Figure 10. The curve of X_m vs T(K) exhibits features associated paramagnetism.

The paramagnetic contribution to the susceptibility arises from the spin and orbital angular moment of the electrons interaction with the field. The paramagnetic behaviour obeys the Curie Law;

$$X_{m} = \frac{Ng^{2}\beta^{2}}{4KT}$$

where N is Avogadro's number, g = 2.0023 for a free electron, and β is the Bohr magneton of the electron. If compound 2 is paramagnetic, the plot of X_m^{-1} vs T in Figure 10 should be a straight line, which obeys the Curie-Weiss law.

$$X_{m} = \frac{C}{T + \Theta}$$

where $C = Ng_2\beta_2/4K$, Θ corrects the T for the non-zero intercept.

In fact, the plot of X_m^{-1} vs T is a curve as shown in Figure 10. In the low temperature range of 5-70K, the plot is almost a straight line, which follows the Curie-Weiss law. As the increase of the plot, the curve is no longer straight, which may be the result of an antiferromagnetic exchange interaction. The room temperature effective magnetic moment per trimeric unit of complex (μ_{eff} =1.97 BM at 297K), which clearly indicates antiferromagnetic coupling, since the value expected for uncorrelated spins should be at least 3. The effective magnetic moment is also temperature dependent as indicated in Figure 11. The X_m T value decreases with the decrease of temperature. This is also in agreement with antiferromagnetic coupling.

Electrochemistry: The redox property of compound 2 was studied by using the cyclic voltammetry technique. The CV diagram of compound 2, which is shown in Figure 12, displayed an irreversible feature. The CV diagram showed one cathodic process of a large broad peak at an E, value of -0.6V, which is probably caused by $Cu^{II} \rightarrow Cu^{I}$ reduction. Compound 2

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also was studied by the technique of differential pulse voltammetry (DPV). The DPV diagram of 2, which is shown in Figure 13, indicated the $E_{1/2}$ value of -0.25V.

II.4. Conclusion

The bdmapH ligand can react with $CuCl_2$ in a 1:1 ratio to produce a dimeric Cu(II) compound, $Cu_2(bdmapH)_2Cl_4$ 1. The molecule of 1 is a dizwitterion. The additional N atom coordination centre in bdmapH ligand probably leads to the formation of the dizwitterion. The dimeric Cu(II) compound is a very good starting material in the synthesis of the trimer $[Cu_3(bdmap)_2Cl_4]$ 2. The bdmapH ligand can link more than two metal centres. Both dimer and trimer display anitferromagnetic exchange behaviour and irreversible electrochemical behaviour.

5

Chapter III

Homonuclear Copper Complexes with a Cyclic Cu^{Π}_{4} Unit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

٠

III.1. Introduction

The discovery of high-temperature cuprate-based superconductors¹⁻² and of superconducting metal oxides with T_e values in excess of 77K has stimulated intense scientific and technological interest in the preparation of high quality, superconducting, high T_e thin films by MOCVD and sol-gel processes.¹⁰⁶⁻¹⁰⁷ Studies have suggested that hetero-metallic complex might be important intermediates in the MOCVD technique and chemical sol-gel processes. Several heteronuclear metal complexes related to the precursors of high T_e superconductors have been reported recently. They are $Ba{Cu[OCMe(CF_3)_2]_3}_2^{125}$; the most volatile Ba-Cu complex, (CuO)₃Ba₂Y(OCH₂CH₂OCH₃)₇¹²⁶; used in the synthesis of the YBa₂Cu₃O_{7.2} superconductor, and Ba₂Cu₂(OCH₂CH₂OCH₃)₄(acac)₄(HOCH₂CH₂OCH₃)₂⁴³; isolated from the precursor solution to YBa₂Cu₃O₇ thin films. The structure of a heteronuclear Y₂Cu₈ complex has been reported by our group.44 The central core structure of this compound remarkably resembles that of the 1-2-3 superconductor. A Ba-Cu complex has been synthesized¹⁰⁸ in our lab, and a very soluble precursor, Y₂Cu₆(CF₃COO)₁(bdmap)₁₀¹⁰⁹ has also been prepared in our group. However, the application of the processes mentioned above suffers from the limited availability of precursor compounds and a lack of understanding of the solution chemistry involved in the processes. Our group has been particularly interested in the syntheses of heteronuclear metal complexes with metal composition and structures resembling those of 1-2-3 superconductors. Such complexes can not only be used as precursors for superconductors but also can be used as molecular models for the study of the chemical and physical properties of superconductors. The problem associated with the synthesis of these hetero-nuclear metal complexes is that there is not much control in the structures of the products due to the electrostatic nature of barium-ligand and yttrium-ligand bonds. The precursors obtained by these methods are often discrete molecular species and their structures may have very little resemblance to those of 1-2-3 superconductors. For this reason, it is believed that an alternative approach is necessary for the preparation of oriented high-temperature cuprate superconductors in which the crystallographic orientation of the superconducting phase may be at least partially controlled by the structure of the precursors.

It is well known that the 1-2-3 superconductor has a layered structure¹¹³ shown in Figure 14. In the unit cell these layers are Cu_4O_2 -BaO₄- Cu_4O_4 -Y- Cu_4O_4 -BaO₄- Cu_4O_2 , that is, it consists of Cu_4O_x units inter-layered by BaO₄ and Y units. It is of interest to examine whether a molecular complex could be used as a building block for the construction of molecular complexes with structures resembling that of the 1-2-3 superconductors in one dimension. Such building blocks should also make it possible to control the addition of different metal atoms to the complex as shown in scheme 3. In this chapter of the thesis, a new class of planar cyclic Cu_4 complexes are presented. The structure of the cyclic Cu_4 unit is similar to the structure of the Cu_4O_4 unit of layers in 1-2-3 superconductors. The details of the syntheses and crystal structures are discussed. These compounds indeed display the potential to form one-dimensional arrays.

III.2. Experimental Section

III.2.1. Chemicals and Solvents

All manipulations were carried out using standard Schlenk lines or a nitrogen-filled drybox. All solvents were dried in an appropriate manner under nitrogen prior to use. Cupric

() 01.05 When disordered () 0Z,03 Ø 01.04 Oxygens

(a) $YBa_2Cu_3O_7$, orthorhombic (b) $YBa_2Cu_3O_6$ (c) $YBa_2Cu_3O_7$, tetragonal

$$\left(\begin{array}{c} \mathbb{Q} \\ \mathbb{Q}$$

•

Schenne 3

.

acetate was purchased from Fisher Scientific. Silver acetate, 2-hydroxypridine, tetrabutylammonium hexafluorophosphate and the yttrium ethoxide ethanol complex were purchased from Aldrich Chemicals Co.. Thallium(I) hexafluorophosphate was purchased from Strem Chemicals Inc. and it was stored in a desiccator.

III.2.2. Synthesis of $[Cu^{II}_{4}(bdmap)_{3}(OH)(OAc)_{2}(HOAc)(H_{2}O)][PF_{6}]_{2}$ 3

Cu₂(bdmapH)₂Cl₄ 1 (168mg, 0.30mmol) was added to CH₂Cl₂ (30ml). The solution was stirred for about 10 minutes. The light green compound 1 was completely dissolved to give a clear light green solution. Then Ag(OAc) (150mg, 1.20mmol) was added to this solution. After being stirred for 2 h at 23°C, the colour of the solution changed from light green to blue and a white powder of AgCl formed on the bottom of the flask. TiPF₆ (99mg, 0.28mmol) was added to the filtered solution. The mixture was stirred for an additional 5 h and yielded a grey white powder (TlCl). The solution was then filtered and concentrated to approximately 10ml by pumping the solvent under vacuum. Diethyl ether and toluene were added to the solution. After a few days at 23°C, dark blue crystals of 3 (45mg, yield 12%, m.p. 235°C dec.) were obtained. Elemental analysis: calcd. for C₂₇H₆₄Cu₄P₂F₁₂O₁₁N₆: C%, 26.31; H%, 5.21; N%, 6.58. Found: C%, 26.36; H%, 5.34; N%, 6.42. IR (KBr, cm⁻¹): 3619(m, OH), 3549 (m, OH), 3300 (w, br, OH), 1575 (s, C=O), 1469 (s, C=O), 1439 (s, C=O), 1098 (m, C-O), 850 (vs, P-F).

III.2.3. Synthesis of $[Cu^n_4(bdmap)_2(OAc)_3(OH)_2(H_2O)][PF_4] 4$

 $Cu_2(bdampH)_2Cl_4$ 1 (140mg, 0.25mmol) was completely dissolved in CH_2Cl_2 (100ml); a clear light green solution was obtained after stirring for ten minutes. Then $Cu(OAc)_2 \cdot H_2O$

:=:

(196mg, 0.49mmol) was added to this solution. After being stirred for 1 h, the blue crystals of $Cu(OAc)_2 \cdot H_2O$ disappeared completely, and the light green colour of the solution turned to dark blue green. Then Ag(OAc) (327mg, 1.90mmol) was added to this blue green solution. After being stirred for an additional 1 h, the AgCl precipitation was removed by filtration. A dark blue solution was obtained. Y(OEt)₃-ethanol (132mg, 0.49mmol) was added to the blue solution. After stirring for 0.5 h, TIPF₆ (162mg, 0.49mmol) was added to the solution which was then filtered again and concentrated. A small amount of the solvents diethyl ether and toluene were added to the solution. After standing at room temperature for about two weeks, small dark blue crystals of 4 (10mg, m.p. 145°C dec.) had crystallized for the solution mixture. Elemental analysis: calcd. for $Cu_4C_{20}H_{47}O_{11}N_2PF_6$; C%, 26.09; H%, 5.11; N%, 6.09. Found: C% 25.70; H%, 4.77; N%, 5.82. IR (KBr, cm⁻²): 3270 (m, OH), 1559 (m. C=O), 1471 (m, C=O), 1442 (m, C=O), 840 (vs, P-F).

III.2.4. Synthesis of $[Cu^{II}_{4}(bdmap)_{2}(OAc)_{4}][PF_{4}]_{2}$ 5

Method A: Cu(OMe)₂ (70mg, 0.56mmol) and bdmapH (164mg, 1.12mmol) were dissolved in CH₂Cl₂ (100ml) solvent as stirred for about 2 h. Then CuCl₂ (76mg, 0.56mmol) and Cu(OAc)₂·H₂O (224mg, 1.12mmol) were added to the solution. After being stirred for 1 h, a dark blue solution was obtained. TIPF₆ (176mg, 0.53mmol) was added to the blue solution and a white powder (TICl) was removed by filtration. Then diethyl ether and toluene were added to the filtered solution. The solution was allowed to stand at 23°C for a few weeks. Dark blue crystals of compound 5 were obtained (yield < 5%, m.p. 265°C dec.). Elemental Analysis: Calcd for Cu₄C₂₂H₄₆O₁₀N₄P₂F₁₂, C%, 24.63%; H%, 4.29; N%, 5.22. Found: C%, 25.11; H%,

4.12; N%, 5.38. IR (KBr, cm⁻¹): 1567 (s, C=O), 1433 (s, C=O), 836 (vs, P-F). ¹H NMR (acetone-d₆ solvent, ppm): 2.70 (single, broad), 2.04 (quintet).

Method B: $Cu(OMe)_2$ (200mg, 1.60mmol), $CuCl_2$ (72mg, 0.53mmol), bdmapH (156mg, 1.07mmol) and HOAc (128mg, 2.13mmol) were dissolved in CH_2Cl_2 (100ml), and stirred for 2 h. A dark blue solution was obtained. Then TlPF₆ (325mg, 1.07mmol) was added to this blue solution. The solution was stirred continuously for 0.5 h. The white powder of TlCl was removed by filtration. The solution was concentrated and after the addition of diethyl ether and toluene, the solution was allowed to stand at room temperature for a few weeks. Dark blue crystals of compound 5 (40mg, 7% yield) were obtained .

Method C: Cu(OMe)₂ (100mg, 0.80mmol), Cu(OAc)₂-H₂O (213mg, 1.07mmol), bdmapH (156mg, 1.07mmol) and CuCl₂ (36mg, 0.27mmol) were dissolved in MeOH (100ml) as solvent by stirring for 2 h. A dark blue solution was obtained. Then TlPF₆ (167mg, 0.50mmol) and NR₄PF₆ (207mg, 0.54mmol) were added to the blue solution. The filtered solution was concentrated. Diethylether was added to it and after standing for 2-3 days at 23°C, crystals of 5 (46mg, 8% yield) were collected.

III.2.5. Synthesis of [Cu₆(bdmap)₃(OAc)₅(PyOH)(PyO)₂][PF₆]₂ 6

A sample of $Cu_2(bdmapH)_2Cl_4$ 1 (150mg, 0.27mmol) was dissolved in CH_2Cl_2 (150ml) by stirring. Then $Cu(OAc)_2 \cdot H_2O$ (107mg, 0.54mmol) was added to this solution. After being stirred for 1 h at room temperature, the blue solid of $Cu(OAc)_2 \cdot H_2O$ completely dissolved to give a dark blue solution. Bi(C_6H_5)₃ (117mg, 0.27mmol) and PyOH (101mg, 1.06mmol) were added to the solution and stirred for 0.5 h. AgOAc (134mg, 0.80mmol) and TIPF₆ (88mg, 0.27mmol) were added to the solution above. A white solid formed immediately and precipitated from the solution which was then filtered and concentrated. Diethyl ether and toluene were added and subsequently blue green crystals of 6 (17% yield, m.p. 243°C dec.) were collected from the mixture. Elemental analysis: Calcd. C%, 33.50. H%, 4.79. N%, 7.65. Found: C%, 34.71. H%, 4.99. N%, 7.01. IR (KBr, cm⁻¹): 3380 (m, OH), 1656 (s, C=O), 1475 (s, C=O), 1435, 1570 (vs, C=C and C=N), 838 (vs, P-F).

III.2.6. Instruments

Elemental analyses were carried out at the Guelph Chemical Laboratories Ltd.. Infrared spectra were recorded as KBr pellets using a Nicolet 5DX FT-IR spectrometer in the range of wave number from 400cm⁻¹ and 4000cm⁻¹. Melting points were determined on a Fisher-John melting point apparatus. The ¹H NMR spectrum of compound 5 was recorded on a Bruker AC-300 spectrometer.

X-ray Diffraction Analysis: Single crystals of 3 with rectangular shapes were grown by slow diffusion of diethyl ether into the CH_2Cl_2 /toluene solution of 3 at room temperature. Dark blue crystals of 4 with a thin plate shape were obtained from the solution of CH_2Cl_2 /diethyl ether/toluene at room temperature. Dark blue single crystals of 5 were obtained from the solution of CH_2Cl_2 , diethyl ether and toluene at room temperature. Blue green crystals of 6 with rectangular shapes were obtained from the solution of CH_2Cl_2 , diethyl ether and toluene at room temperature. Blue green crystals of 6 with

temperature. The crystals of 3-6 were mounted on glass fibres and sealed with epoxy. Data were collected on a Rigaku AFC6-S diffractometer with graphite-monochromated Mo K_o radiation and processed on a VAX workstation 3520 using the TEXAN crystallographic package (version 5.0). Data were corrected for Lorantz-polarization effects. The X-ray diffraction analyses were performed by Dr. Wang.

III.3. Results and Discussion

$[Cu^{\Pi}_{4}(bdmap)_{3}(OH)(OAc)_{2}(HOAc)(H_{2}O)][PF_{4}]_{2}3$

Synthesis: The dicopper complex $Cu_2(bdmapH)_2Cl_4$ has been used to synthesize the trinuclear Cu(II) compound 2, by remove the proton of the ammonium group. If the chlorine ligands in the dimeric compound 1 can be removed, more coordination sites would be created so that more metal centres could be put in. The first reaction designed is shown in equation (4). $Cu_2(bdmapH)_2Cl_4 \div 4Ag(OAc) \cdot xH_2O \rightarrow 4AgCl + ?$ (4)

Here Ag^+ ions would be expected to precipitate out as AgCl while the OAc anions might provide another kind of coordination ligand. No crystals were obtained from reaction (4). The second reaction designed is shown in equation (5). It was hoped that the PF₆ anion would help the product to crystallize. The tetranuclear copper compound 3 was synthesized by the reaction (5) of Cu₂(bdmapH)₂Cl₄ with AgOAc and TIPF₆ in a 1:4:1 ratio.

 $2Cu_2(bdmapH)_2Cl_4 + 8Ag(OAc) \cdot xH_2O + 2fIPF_6 \rightarrow$

 $[Cu_4(bdmap)_3(OH)(OAc)_2(HOAc)(H_2O)][PF_d]_2 3$ (5)

4

The formation of the hydroxy ligand in this complex may arise from trace amounts of water in the solvent or in $Ag(OAc) \cdot xH_2O$ providing the source of the OH⁻ ligand. The presence of excess of AgOAc appeared necessary for the formation of the hydroxy ligand.

X-ray Crystal Structure: The structures of copper(II) compounds have been studied extensively. Several hundred have been determined by single-crystal X-ray analyses. For tetranuclear Cu(II) complexes only four types have been structurally identified. The four structural types are (i) linear, (ii) zigzag or stepped, (iii) planar and (iv) tetrahedral.

Compound 3 has been characterized by single-crystal X-ray diffraction analysis. The diagram for the Cu₄ cation of 3 is given in Figure 15. Selected bond distances and angles are given in Table 6 and Table 7. The cation of 3 consists of four Cu^π ions bridged by two acetate ligands and two bdmap ligands in a cyclic fashion. The bdmap ligand functions as a tridentate ligand and bridges two copper atoms through oxygen and two nitrogen atoms. A similar bonding situation has been observed in the trinuclear compound¹²⁴ Cu₃(bdmap)₂Cl₄. The twelve-membered ring formed by the four copper atoms, two CO₂ groups, and two oxygen atoms from the bdmap ligands is essentially planar with the maximum deviation (\pm 0.37Å) of O(3) from the plane. Cu(2) and Cu(3) are further bridged by an oxygen atom from the additional bdmap ligand, while Cu(1) and Cu(4) are further bridged by a hydroxy ligand. The four copper atoms have an approximaterectangular arrangement, Cu(1)-Cu(2)=3.695(3)Å, Cu(2)-Cu(3)=3.307(3)Å, Cu(3)-Cu(4)=3.694(3)Å, Cu(1)-Cu(4)=3.149(3)Å. In comparison with the Cu(1)-Cu(2) and Cu(3)-Cu(4) can be

 Table 6
 Selected Bond distances of Compound 3

atom	atom	distance	atom	atom	distance
CUI	03	1.970(9)	CU2	N4	2.41(1)
CUl	04	1.97(1)	CU4	011	2.47(1)
CUI	08	1.92(1)	CUl	CU2	3.695(3)
CUl	N6	2.02(1)	CU3	CU4	3.694(3)
CU2	02	1.954(9)	01	C2	1.40(2)
CU2	03	1.96(1)	02	C9	1.43(2)
CU2	06	1.98(1)	03	C16	1.43(2)
CU2	NS	2.00(1)	04	C22	1.23(2)
CU3	01	1.988(9)	05	C22	1.25(2)
CU3	02	1.96(1)	06	C24	1.24(2)
CU3	07	1.96(1)	07	C24	1.25(2)
CU3	N2	1.99(1)	09	C26	1.20(3)
CU4	01	1.95(1)	010	C26	1.30(3)
CU4	05	1.94(1)	NI	Cl	1.48(3)
CU4	08	1.92(1)	N5	C15	1.48(3)
CU4	Nl	2.01(1)	N5	C19	1.42(3)
CU3	NJ	2.42(1)	N6	C20	1.40(3)
CUI	09	2.68(2)	Cl	C2	1.38(3)
CUI	CU4	3.149(3)	C8	C9	1.50(2)
CU2	CU3	3.307(3)	C15	C16	1.43(3)
C2	С3	1.46(3)	C22	C23	1.53(2)
С9	C10	1.50(3)	C26	C27	1.45(4)
C16	C17	1.42(3)			
C24	C25	1.50(2)			·.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

atom	atom	distance	atom	atom	distance
Nl	C4	1.44(3)	NI	C5	1.44(3)
N2	С3	1.49(3)	N2	Ce	1.46(3)
N2	C7	1.46(3)	N3	C8	1.43(2)
N3	C11	1.48(2)	N3	C12	1.48(2)
N4	C10	1.43(2)	N4	C13	1.48(2)
N4	C14	1.46(3)			
N5	C18	1.45(3)			
N6	C17	1.45(2)			
N6	C21	1.41(3)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

•

Table 7

Bond Angles of Compound 3

atom	atom	atom	angle	atom	atom	atom	angle
03	CUI	04	173.8(5)	CU3	01	CU4	139.3(5)
03	CUI	08	93.1(4)	CU3	01	C2	109.3(8)
03	CUI	N6	87.1(5)	CU4	01	C2	111.3(8)
04	CU1	08	91.9(4)	CU2	02	CU3	115.4(5)
04	CUI	NG	88.1(5)	CU2	02	C9	111.3(8)
08	CUI	N6	176.4(5)	CU3	02	C9	110.6(9)
02	CU2	03	94.4(4)	CU1	03	CU2	140.0(5)
02	CU2	06	90.6(4)	CUI	03	C16	107.7(9)
02	CU2	N 5	168.9(5)	CU2	03	C16	112.1(8)
03	CU2	06	166.1(5)	CUI	04	C22	132(1)
03	CU2	N5	86.3(5)	CU4	05	C22	128.9(9)
06	CU2	N5	86.3(5)	CU2	06	C24	134(1)
01	CU3	02	94.5(4)	CU3	07	C24	131(1)
01	CU3	07	172.1(5)	CU1	08	CU4	110.3(5)
01	CU3	N2	86.6(5)	CU4	NI	Cl	103(1)
02	CU3	07	90.5(5)	CU4	Nl	C4	110(1)
02	CU3	N2	165.4(5)	CU4	NI	C5	115(1)
07	CU3	N2	87.0(5)	CU3	N2	С3	109(1)
01	CU4	05	173.0(4)	CU3	N2	C6	113(1)
01	CU4	08	93.8(4)	CU3	N2	C7	114(1)
01	CU4	NI	85.7(5)	N5	CU2	N4	109.8(6)
05	CU4	08	91.2(4)	02	CU3	N3	80.0(5)
05	CU4	Nl	88.4(5)	N2	CU3	NЗ	114.4(5)
08	CU4	Nl	168.9(5)				

1

.

atom	atom	atom	angle	atom	atom	atom	angle
CU2	N5	C15	104(1)	CUI	N6	C17	104(1)
CU2	N5	C18	117(1)	CUI	N6	C20	113(1)
CU2	N 5	C19	106(1)	CUI	N6	C21	111(1)
06	CU2	N4	96.1(5)				
07	CU3	NЗ	93.1(5)				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

.

attributed to the double bridges over these two pairs of Cu atoms. Such bridging effects on Cu-Cu distances have been frequently observed^{69,114,123}. The most common arrangement of tetranuclear copper (II) compounds is tetrahedral.⁸¹ For example, the class of [CuX(OCH₂CH₂NR₂)_a] compounds (X=Cl, Br, NCS and NCO; R=Me, Et, Pr^a, or Bu^a. n=2, 4 or ∞) except for the dimer and polymer, are tetrameric cuban-type molecules (Table 1). The rectangular planar arrangement of tetranuclear Cu(II) compounds with Cu(II) atoms in close proximity is rare. Among the few known examples are¹¹² [Cu₄(mpz)₄(acmpz)₂(NO₃)₂], mpzH=3(5)-methylpyrazole and acmpzH=1-(1-ethanoyl)-5-methylpyrazole, and¹¹³

By comparing the Cu-Cu distances of double bridges in dimer 1, trimer 2 and tetramer 3, it is found that the Cu-Cu distances in double bridges follow a order of dimer < trimer < tetramer. In the dimer $[Cu_2(bdmapH)_2Cl_4]$ 1, two Cu atoms are bridged by two bdmapH ligands which are almost parallel and have a cis configuration in respect to the Cu-Cu' vector. There is no crowdedness effect between ligand and ligand or ligand and copper atoms. In trimer $[Cu_3(bdmap)_2Cl_4]$ 2, although two Cu atoms [Cu(1) and Cu(3)] are also bridged by two oxygen atoms from two bdmap ligands, Cl(2) atom is very closed to the plane of Cu(3)O(1)Cl(4)N(3)O(2), and the dihedral angle between the plane of O(1)Cl(2)Cl(3)N(2) and the plane of O(1)O(2)N(3)Cl(4) is nearly 80°, which results in steric effect. On the other hand, both N(1) and N(4) atoms from the two bdmapH ligands in 2 coordinate to Cu(1) atom at the same time. These two $-N(CH_3)_2$ groups increase steric effect. These make the bdmap ligand distorted and weaken the bridging ability of this bdmap ligand. Therefore, the Cu-Cu distance in double bridges of dimer 1 is much shorter than that in trimer 2. In the tetramer 3, one of the double bridge ligands is an acetate ligand which bridges each pair of Cu atoms through two oxygen atoms. The Cu-Cu distance with double bridges in 3 is longer than those of 1 and 2.

Each copper atom in 3 is five-coordinate with a square-pyramidal geometry. The four copper-ligand bonds in the plane have normal bond distances, while the fifth ligand coordinates to the Cu centre with a long copper-ligand bond length. Cu(2) and Cu(3) are both weakly coordinate by a nitrogen atom from the bdmap ligand. Cu(2)-N(4)=2.41(1)Å, Cu(3)-N(3)=2.42(1)Å. Cu(1) is coordinated weakly by an oxygen atom from an acetic acid ligand, Cu(1)-O(9)=2.68(2)Å. Cu(4) is coordinated by an H₂O ligand. Cu(4)-O(11)=2.47(1)Å. Fivecoordinate copper(II) complexes often display trigonal-bipyramidal structures. Square-pyramidal structures are relatively less common. The assignments of the acetic acid and water ligands are based on the charge of the cation and long Cu-O distances. It has been well established that a neutral ligand tends to occupy the fifth position in square-pyramidal Cu(II) complex.^{81,114} A hydrogen bond⁷⁷⁻⁷⁹ is present between the hydroxy ligand and the acetic acid ligand, as evidence by the C(26)-O(10)-O(8) angle of 106(1)° and O(8)-O(10) distance of 2.61(2)Å, much shorter than the sum of the van der Waals radii⁷⁶ of oxygen atoms (2.80Å). Such an unusual hydrogen bond between an acid and a strong base is apparently stabilized by the coordination of hydroxy group to the Cu atoms. The hydroxy ligand and the bdmap ligand on the ring are cis to each other. Hence, the other two bdmap ligands are cis to each other as well. The bdmap ligand bonded to the Cu, ring may be used to incorporate other metal centres through the two nitrogen atoms that are weakly bonded to the copper centres.

IR Spectrum Analysis: The IR spectrum of compound 3 is shown in Figure 16. There are three medium-intensity bands at 3619cm⁻¹(sharp), 3549cm⁻¹(sharp) and 3300cm⁻¹(broad), which could be caused by 'aree different frequencies arising from the OH stretching vibrations of the three different hydroxy groups in 3. These three types of hydroxy groups arise from the hydroxy, water and acetic acid ligands in 3. In the molecular structure of compound 3 the oxygen atom of the hydroxy ligand is bonded to Cu(1) and Cu(4) atoms. The hydroxy ligand also forms an intramolecular hydrogen bond with the carbonyl group of the acetic acid. Its vibrational frequency should be relatively lower than those of hydroxy group in the water and acetic acid ligands. The absorption band of this group should also be broader than other OH groups. Therefore, the broad peak at 3390cm⁻¹ was assigned to the hydroxy ligand stretching frequency. The sharp bands at 3549cm⁻¹ and 3619cm⁻¹ were assigned to the OH stretch in the water and acetic acid ligands.

The infrared spectra of complexes of carboxylic acids have been studied extensively.⁹³ In examining the effect of coordination on C-O stretching frequency of the carboxylic group, it is important to interpret the results on the basis of the structure of compounds as determined by X-ray analysis. The acetate anion coordinates with a metal ion usually in one of following manners:

According to the crystal structure of compound 3, the bonding of RCOO⁻¹ and Cu(II) atoms belongs to the type IV. A series of compounds having type IV structures have been studied extensively by Nakamoto and co-workers.⁹³ For example, the antisymmetric and symmetric COO stretching frequencies in Cu₂(OAc)₄·2H₂O were assigned to 1590cm⁻¹ and 1440cm⁻¹ respectively. In the IR spectrum of compound 3, the absorption bands at 1575cm⁻¹ and 1439cm⁻¹ could be caused by antisymmetric and symmetric COO stretching frequencies. A absorption band at 1469cm⁻¹ was assigned to the C=O stretching frequency in HOAc and the absorption band at 1098cm⁻¹ to the C-O stretching vibration³¹.

Compounds containing the P-F bond have been studied by a number of researchers.⁹² As is expected the range is a wide one, which Thomas puts at 940-740cm⁻¹. This can be subdivided into pentavalent phosphorus and trivalent phosphorus compounds. The former absorb between 940-794cm⁻¹ and the 'atter between 800-740cm⁻¹. In the spectrum of compound 3, a very intensive absorption band at 850cm⁻¹ is assigned to the P-F vibration in PF_{6}^{1} .⁹²

$[Cu^{II}_{4}(bdmap)_{2}(OAc)_{3}(OH)_{2}(H_{2}O)][PF_{4}]4$

Synthesis: The tetrameric copper compound 3 was synthesized by the reaction of $Cu_2(bdmapH)_2Cl_4$ 1 with AgOAc and TlPF₆ in a 1:4:1 ratio. Ag(OAc) was used to precipitate the Cl⁻ anion in the dimer 1. The acetate anions OAc⁻ provided an additional coordinating ligand and also reacted with the protons in bdmapH. The anion, PF₆⁻, was used for the crystallization of 3.

It was hoped that the reaction of $Cu_2(bdmapH)_2Cl_4 1$ with $Cu_2(OAc)_4 \cdot 2H_2O$, $Y(OC_2H_3)_3$, AgOAc and TIPF₆ in a 1:1:1:4:1 would result in the synthesis of a Y-Cu complex. However, the homonuclear compound 4 was actually obtained from this reaction as is shown in equation (6). The functions of AgOAc and TIPF₆ are the same as those in the synthesis of 3. The compound $Cu_2(OAc)_4 \cdot 2H_2O$ could provide additional Cu metal centres and OAc⁻ ligands. $Y(OC_2H_5)_3$ might have caused the formation of hydroxy ligands in the product 4 by reacting with the trace amount of water in the solution. The yield of the product varied with the reaction conditions. Independent synthesis was unsuccessful. However, in the presence of $Y(OC_2H_5)_3$ the synthesis was reproducible.

 $Cu_2(bdmapH)_2Cl_4 + Cu_2(OAc)_4 \cdot 2H_2O + Y(OC_2H_5)_3 + 4AgOAc + TIPF_6 \rightarrow [Cu_4(bdmap)_2(OAc)_3(OH)_2(H_2O)][PF_6]$ (6)

X-ray Crystal Structure: The compound 4 was fully characterized by single-crystal Xray analysis. The structure of the cation is shown in Figure 17. Selected bond lengths and angles are given in Table 8 and Table 9.

The features of the twelve-membered ring in the cation are similar to that of 3. There are two hydroxy ligands bridging two pairs of Cu atoms. The two hydroxy groups have a cis configuration with respect to the twelve-membered ring. An H₂O ligand and an acetate ligand bridge Cu(2)/Cu(3) and Cu(1)/Cu(4), respectively through the formation of two long Cu-O bonds, Cu(2)-O(11)=2.37(1)Å, Cu(3)-Cu(11)=2.50(1)Å, Cu(1)-O(9)=2.45(2)Å, Cu(4)-O(9)=2.44(2)Å. The distances of Cu(2)-Cu(3)=3.109(5)Å, Cu(1)-Cu(4)=2.998(5)Å are much

66

		Table 8	Bond Distance	es of Com	pound 4	
atom	atom	distance		atom	atom	distance
CUI	CIJ4	2.998(5)		C8	C9	1.50(3)
CUI	02	1.98(1)		C9	C10	1.52(3)
CUI	06	1.98(1)		C15	C16	1.54(3)
CUI	07	1.92(1)		C17	C18	1.54(3)
CUl	09	2.45(2)		01	C2	1.36(2)
CUl	N4	2.03(2)		02	C9	1.41(2)
CU2	CU3	3.109(5)		03	C15	1.25(2)
CU2	02	1.99(1)		04	C15	1.19(2)
CU2	04	1.97(1)		05	C17	1.20(2)
CU2	08	1.94(1)		06	C17	1.22(2)
CU2	011	2.37(1)		09	C19	1.23(2)
CU2	N3	2.00(2)		010	C19	1.22(2)
CU3	01	2.02(1)		NI	Cl	1.44(3)
CU3	03	2.00(1)		NI	C4	1.50(3)
CU3	08	1.92(1)		NI	C5	1.49(3)
CU3	011	2.50(1)		N2	C3	1.44(3)
CU3	N2	1.99(2)		N2	C6	1.46(3)
CU4	01	2.01(1)		N2	C7	1.47(3)
CU4	05	1.99(1)		NB	C8	1.46(3)
CU4	07	1.90(1)		NЗ	C1 1	1.49(3)
CU4	09	2.44(2)		N3	C12	1.44(3)
CU4	NI	1.98(2)		N4	C10	1.41(2)
C1	C2	1.49(3)		N4	C13	1.47(3)
C2	C3	1.50(3)		N4	C14	. 1.43(3)
C19	C20	1.52(3)				

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses.

•

atom	atom	atom	angle	atom	atom	atom	angle
CU4	CUI	02	110.9(4)	04	CU2	NJ	88.6(7)
CU4	CUl	06	79.2(5)	08	CU2	011	83.9(5)
CU4	CUl	07	37.9(4)	08	CU2	N3	175.7(7)
CU4	CU1	09	52.1(4)	011	CU2	N3	100.3(6)
CU4	CUI	N4	151.8(5)	CU2	CU3	01	107.7(4)
02	CUI	06	169.4(6)	CU2	CU3	03	75.8(4)
02	CU1	07	94.5(5)	CU2	CU3	08	36.7(3)
02	CUI	09	99.2(5)	CU2	CU3	011	48.5(3)
02	CUI	N4	83.7(6)	CU2	CU3	N2	145.1(5)
06	CUI	07	91.7(6)	01	CU3	03	175.1(6)
06	CUI	09	89.7(6)	01	CU3	08	92.2(5)
06	CUl	N4	88.7(7)	01	CU3	011	92.8(5)
07	CUl	09	87.4(5)	01	CU3	N2	85.5(6)
07	CUI	N4	169.6(7)	03	CU3	08	92.6(5)
09	CUl	N4	103.0(7)	03	CU3	011	87.0(5)
CU3	CU2	02	112.7(4)	03	CU3	N2	89.7(6)
CU3	CU2	04	78.3(4)	08	CU3	011	80.9(5)
CU3	CU2	08	36.2(3)	08	CU3	N2	177.6(6)
CU3	CU2	011	52.1(3)	011	CU3	N2	100.1(6)
CU3	CU2	N3	147.8(5)	CUl	CU4	01	112.9(4)
02	CU2	04	167.2(6)	CU1	CU4	05	77.5(4)
02	CU2	08	94.0(5)	CUI	CU4	07	38.5(4)
02	CU2	011	98.3(5)	CU1	CU4	69	52.4(4)
02	CU2	N3	84.9(6)	CUI	CU4	NI	150.7(5)
04	CU2	08	91.7(6)	01	CU4	05	167.1(5)
04	CUZ	011	93.6(5)	01	CU4	.07	91.9(5)

1

(cont)

atom	atom	atom	angle	atom	atom	atom	angle
01	CU4	09	105.9(5)	CIJI	02	CU2	135.6(7)
01	CU4	NI	83.6(6)	CUI	02	C9	112(1)
05	CU4	07	92.4(6)	CU2	02	C9	112(1)
05	CU4	09	86.3(5)	CU3	03	C15	127 (1)
05	CU4	וא	90.3(6)	CU2	04	C15	127 (2)
07	CU4	09	88.2(5)	CU4	05	C17	127(1)
07	CU4	NI	170.7(6)	CUI	06	C17	125(1)
09	CU4	NI	100.8(6)	CUI	07	CU4	103.5(6)
CU3	N2	С3	105(1)	CU2	08	CU3	107.1(5)
CU3	N2	C6	117(1)	CUI	09	CU4	75.5(5)
CU3	N2	C7	110(1)	CUI	09	C19	135(2)
CU2	N3	C8	105(1)	CU4	09	C19	137 (2)
CU2	N3	C11	112(1)	CU2	011	CU3	79.3(4)
CU2	N3	C12	108(1)	CU4	Nl	Cl	108(1)
CUI	N4	C10	106(1)	CU4	Nl	C4	113(2)
CUI	N4	C13	115(2)	CU4	NI	C5	115(2)
CUI	N4	C14	107(2)				

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

shorter than the distances of Cu(1)-Cu(2)=3.676(6)Å, Cu(3)-Cu(4)=3.746(5)Å. This is mainly caused by triple bridges. However, the distance of Cu(1)-Cu(4)=2.998(5)Å is slightly shorter than the distance of Cu(2)-Cu(3) = 3.109(5)Å. Since H₂O is a neutral ligand, acetate is a ligand with one negative charge, the acetate ligand as an anion has a much stronger affinity to Cu(II) cation than H₂O ligand does, and the bridging ability of acetate ligand is also stronger than that of H₂O. Although a water molecule as a bridging ligand is rare in transition-metal complexes. several examples are known in alkali- and alkaline-earth-metal complexes.^{77,105} In comparison with the Cu-Cu distances in 3, the distances of Cu(2)-Cu(3)=3.109(5)Å, Cu(1)-Cu(4) = 2.998(5)Å in 4 are much shorter than the distances of Cu(2)-Cu(3) = 3.307(3)Å, Cu(1)-Cu(3) = 3.307(3)Å, Cu(1)-Cu(3)Å, Cu(1)-Cu(3)Cu(4) = 3.149(3)Å in 3, this is caused by triple bridges. The geometry of each copper atom is approximately square-pyramidal. The plane Cu(1)O(2)O(7)O(6)N(4) and the plane Cu(2)O(2)O(8)O(4)N(3) are nearly coplanar with a dihedral angle of 4.5°. The plane Cu(3)O(1)O(3)O(8)N(2) has a dihedral angle of 7.5° with the plane Cu(4)O(1)O(5)O(7)N(1). The dihedral angles between the Cu(1) plane and the Cu(4) plane, and the Cu(2) plane and Cu(3)plane are 60.1° and 58.0°, respectively.

The most important feature of the molecule 4 is that the Cu cations form a onedimensional structure in the solid state, as shown in Figure 18. This one-dimensional structure is achieved through the face to face and back to back dimerization by two sets of intermolecular bonds. One set are intermolecular hydrogen bonds between the H₂O and acetate libands. $O(10) \cdots O(11') = 2.72(2)$ Å, $C(19) - O(10) \cdots O(11') = 142(2)$ Å, and perhaps two weak intermolecular hydrogen bonds between the hydroxy ligand O(8') and the O(1) atom of the

One Dimensional Structure of Compound 4

bdmap ligand, $O(1) \cdots O(8) = 2.92(2)$ Å, $C(2) - O(1) \cdots O(8') = 113(1)^\circ$. O(10) also forms an intramolecular hydrogen bond with the H₂O ligand, as evidenced by the $O(10) \cdot \cdot \cdot O(11)$ distance of 2.71(2)Å and the C(19)-O(10) - -O(11) angle of $127(2)^\circ$. The other set of bonds are two long intermolecular Cu-O bonds, Cu(3)-O(7')=2.81(1)Å. The shortest intermolecular Cu-Cu distance is 3.910(5)Å for Cu(3)-Cu(4'), comparable to the intramolecular Cu-Cu distances of Cu(3)-Cu(4), 3.746(6)Å, and Cu(1)-Cu(2), 3.676(6)Å. Hydrogen bonds between a water molecule and an acetate have been observed previously in inorganic and organic hydrates such as oxalic acid dihydrate where the water molecule is the donor of two protons.⁷⁹ The use of hydrogen bonds to control the assembly of molecules has been one of the widely-used strategies in the synthesis of supramolecules.¹¹⁶⁻¹¹⁷ The synthesis of low-dimensional polymeric compounds, especially those containing metal atoms in one-dimensional arrays, has also been a very active research area.¹¹⁵⁻¹¹⁹ Low-dimensional materials are very attractive to chemists not only because they display interesting anisotropic properties but also because they may have important applications as new materials. Most of the known one-dimensional inorganic compounds have a staggered, one-metal-centred chain structure in the solid state.¹¹⁸⁻¹²⁰ One-dimensional inorganic compounds which contain multiple-metal-centre units arranged along one dimension are rare. The compound 4 represents a new polymeric inorganic material.

IR Spectra Analysis: Compound 4 has been characterized by IR as shown in Figure 19. The OH frequencies of the two hydroxy ligands and a water molecule in 4 were overlapped at between 3300cm⁻¹ and 3200cm⁻¹. By comparison with the OH frequencies in 3, the absorption frequencies in 4 were lower than those of 3. This could be caused by the presence of intra- and

inter- hydrogen bonds among hydroxy ligands, the water molecule and the acetate ligand in 4. The absorption bands at 1559cm⁻¹ and 1442cm⁻¹ were assigned to the antisymmetric and symmetric COO stretching frequencies. The absorption band at 1471cm⁻¹ was assigned to the stretching frequency of C=O in the COO⁻¹ bridging ligand containing O(9) in 4. The very intensive band at 840cm⁻¹ was assigned to the P-F stretching frequency in PF₆⁻¹ anion.

$[Cu^{II}_{4}(bdmap)_{2}(OAc)_{4}][PF_{4}]_{2}$ 5

Synthesis: The tetrameric copper(II) compound 5 has been synthesized by the methods of A, B and C. The appropriate equations are shown in (7), (8) and (9).

 $Cu(OMe)_2 + 2bdmapH + 2Cu(OAc)_2 \cdot H_2O + CuCl_2 + 2TIPF_6 \rightarrow$

 $[Cu_4(bdmap)_2(OAc)_4][PF_6]_2$ (7)

 $3Cu(OMe)_2 + 2bdmapH + CuCl_2 + 4HOAc + 2TlPF_6 \rightarrow$

 $[Cu_4(bdmap)_2(OAc)_4][PF_6]_2 + 2TICl + 6HOMe$ (8)

 $1.5Cu(OMe)_2 + 2bdmapH + 2Cu(OAc)_2 \cdot H_2O + 0.5CuCl_2 + TIPF_6 + NR_4PF_6 \rightarrow$

$$[Cu_{4}(bdmap)_{2}(OAc)_{4}][PF_{4}]_{2}$$
(9)

In reaction (7), the two equivalents of OMe only neutralized the two equivalents of H⁺ from the bdmapH ligand. Two equivalents of Tl⁺ were required for the precipitation of the two equivalents of Cl⁻ in CuCl₂. In reaction (8), six equivalents of OMe not only neutralized the two equivalents of H⁺ from the bdmapH ligand, but also removed the four equivalents of H⁺ from acetic acid. Two equivalents of Tl⁺ precipitated the two equivalents of Cl⁻ in CuCl₂. The yields by methods A and B were quite low. In reaction (9), only three equivalents of OMe were required for the removal of two equivalents of H⁺ from the bdmapH ligand, leaving an excess of one equivalent of OMe⁻ in the reaction. One equivalent of Tl⁺ precipitated one equivalent of Cl⁻ in CuCl₂. The two equivalents of PF_6^- anion came from TlPF₆ and NR₄PF₆. Although the yields of the copper(II) compound 5 by methods A, B and C were less than 10%, the yield by method C was a little better than the yields by methods B and C. The reaction mechanisms are not understood, but the low yield might be caused by the poor solubility of the product 5. Most of product 5 was lost due to the coprecipitation with TlCl.

X-ray Crystal Structure: The compound 5 was fully characterized by X-ray analyses. The molecular structure is shown in Figure 20. Bond lengths and angles are listed in Table 10 and Table 11, respectively. The molecule of 5 has an inversion centre. Two acetate ligands and two bdmap ligands bridge the four copper atoms in a square-planar arrangement, Cu(1)-Cu(2)=3.435(3)Å, Cu(1)-Cu(2')=3.305(2)Å. Interestingly, the double-bridged Cu(1)-Cu(2)distance is slightly longer than the single-bridged Cu(1)-Cu(2') distance. The twelve-membered ring composed of the four copper atoms, two CO₂ units, and two oxygen atoms is similar to those of compound 3 and 4. This ring unit is essentially planar with the maximum deviation $(\pm 0.44 \text{\AA})$ of O(1) from the plane. In 3 and 4, the additional ligands bridge the two pairs of Cu atoms bridged by the acetate ligands. In contrast, the two additional acetate ligands in 5 bridge Cu(1) and Cu(2) or Cu(1') and Cu(2') that are bridged by the bdmap ligands. Several factors might contribute to the preference of bridging Cu(1) and Cu(2) instead of Cu(1) and Cu(2'). First of all, each Cu(II) centre requires a square-planar geometry. Secondly, the geometry of the bdmap ligand requires that the oxygen and nitrogen atoms coordinate to the Cu(II) centre in a cis fashion. As a result, the oxygen atoms from the acetate ligands have to coordinate to the

Figure 20 Cation Structure of Compound 5

 Table 10
 Bond Distances of compound 5

atom	atom	distance	atom	atom	distance
CU2	01	1.874(8)	02	C8	1.26(1)
CU2	03'	1.919(8)	03	C8	1.23(1)
CU2	05	1.961(8)	04	C10	1.27(1)
CU2	N2	2.02(1)	05	C10	1.24(1)
CUI	01	1.884(8)	Nl	C1	1.45(3)
CUI	02	1.938(9)	NI	C4	1.41(2)
CUI	04	1.949(8)	NI	C5	1.46(2)
CUI	NI	2.01(1)	N2	C3	1.44(2)
Pl	Fl	1.53(1)	N2	Ce	1.46(3)
Pl	F2	1.46(1)	N2	C7	1.46(2)
Pl	F3	1.55(1)	Cl	C2	1.36(2)
Pl	F4	1.51(1)	C2	C3	1.35(2)
Pl	F5	1.45(1)	C8	C9	1.48(2)
P1	F6	1.53(2)	C10	CII	1.49(2)
01	C2	1.40(2)			

Distances are in angstroms. Estimated standard deviations in the least significant figure are given in parentheses. . •

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

•

atom	atom	atom	angle	atom	atom	atom	angle
01	CU2	03	174.9(4)	F5	Pl	F6	173(1)
01	CU2	05	95.1(3)	CU2	01	CUI	132.1(4)
01	CU2	N2	85.7(4)	CU2	01	c2	114.7(8)
03	CU2	05	89.9(3)	CUl	01	C2	113.1(8)
03	CU2	N2	89.7(4)	CUI	02	C8	128.7(9)
05	CU2	N2	159.8(4)	CU2	03	C8	132.4(9)
01	CUl	C2	174.5(4)	CUl	04	C10	131.2(8)
01	CUI	04	94.8(3)	CU2	05	C10	132.2(8)
01	CUl	בא	85.9(4)	CUl	Nl	Cl	107(1)
02	CUI	04	89.9(4)	CUI	NI	C4	114(1)
02	CUI	NI	89.9(4)	CU1	NI	C5	112(1)
04	CUI	וא	173.4(4)	Cl	Nl	C4	109(2)
Fl	Pl	F2	177(1)	Cl	NI	C5	110(2)
Fl	Pl	F3	90.2(6)	C4	NI	C5	105(1)
Fl	Pl	E4	90.2(7)	CU2	N2	СЗ	105(1)
Fl	Pl	F 5	89(1)	CU2	N2	C6	111(1)
Fl	Pl	F6	84(1)	CU2	N2	C7	113(1)
F2	P1	F3	89.9(7)	C3	N2	C6	115(2)
F2	Pl	F4	89.8(7)	C3	N2	C7	106(1)
F2	Pl	F5	94(1)	C6	N2	C7	107(1)
F2	Pl	FE	93(1)	Nl	Cl	C2	117 (2)
F3	Pl	F4	177.7(9)	Ol	C2	Cl	117 (2)
F3	P1	E5	91.3(8)	01	C2	C3	114(2)
F3	P1	F6	86.7(8)	Cl	C2	С3	129 (2)
E4	Pl	E5	86.4(9)	N2	С3	C2	121 (2)
E4	Pl	F6	96(1)	02	C8	03	126(1)

Angles are in degrees. Estimated standard deviations in the least significant figure are given in parentheses.

:

Cu(II) centre in a cis fashion as well. It can be demonstrated easily by simple molecular models that in order to minimize the steric interactions of ligand atoms, the acetate bridging of Cu(1) and Cu(2) is the preferred geometry. The two dimeric units of Cu₂(bdmap)(OAc) are parallel to each other. The dihedral angle between the twelve-membered ring and the plane defined by Cu(1) and Cu(2) and atoms coordinated to these two copper atoms is about 45°. The two acetate ligands coordinate to the ring in a trans configuration. As a consequence, the two bdmap ligands are trans to each other. The O(4') atom is weakly bonded to Cu(2), Cu(2)-O(4')=2.549(8)Å. The geometry of Cu(2) is square-pyramided. The shortest contact between the ligand atoms and the Cu(1) atom are between Cu(1) and O(5')[2.830(8)Å], and Cu(1) and F(3) of the PF₆⁻¹ anion [2.771(1)Å]. These O(5') and F(3) atoms occupy the fifth and sixth positions of the Cu(1) atom. As a shown in Figure 21. As a result the geometry of Cu(1) is an elongated octahedrons. All other contact distances between the Cu atoms and the PF₆⁻¹ anion are larger than 3.60 Å and therefore can be ignored. A similar PF₆⁻¹ anion interaction with a Cu(II) centre has been reported recently.¹²¹

The common feature of the structures 3-5 is the presence of the cyclic unit composed of four copper(II) ions, two acetate ligands, and two bdmap ligands. The structures of 3-5 illustrate that the cyclic Cu_4 unit is capable of accommodating a variety of ligands. It is believed that the ligand environments on the ring can be modified such that heterometal ions such as Y^{3+} or Ba^{2+} can be readily incorporated into the Cu_4 complexes.

¹H NMR Spectrum: The ¹H NMR spectra of the compound 5 is shown in Figure 22.

.

Only two regions of signals were observed in acetone- d_6 for the compound 5. A quintet at 2.04 ppm is the typical peak of the acetone- d_6 solvent. The other region is a very broad peak around 2.7 ppm, which is due to the proton chemical shifts of the bdmap and acetate ligands. The broadness of these chemical shifts was apparently caused by the paramagnetic behaviour of the tetramer in solution at room temperature.

This phenomenon has also been observed in the ¹H NMR spectrum of the tetranuclear Cu(II) compound, $[Cu^{II}_{4}(bdmap)_{2}(OAc)_{2}(OH)_{2}][Hg(OAc)Cl_{2}L[HgCl_{2}]$. The structure of the Cu₄Hg₃ tetramer is shown in Figure 23. This structure is similar to the structure of **5**. The two bdmap, two OAc⁻ and four Cu(II) atoms formed a twelve-membered ring, which is the same as the twelve-membered ring in **5**. The two pairs of Cu(II) atoms in this compound are bridged by two hydroxy ligands instead of two acetate ligands in **5**. The ¹H chemical shifts from the ligands are very broad in ¹H NMR spectrum apparently due to the similar paramagnetic shift.

IR Spectrum Analysis: The IR spectrum of compound 5 is shown in Figure 24. It was established from the X-ray crystal structure of compound 5 that the bonding of OAc⁻ ligands and Cu(II) atoms belongs to the type IV (pages2). The antisymmetric and symmetric OAc⁻ stretching frequencies in 5 might be assigned at 1567cm⁻¹ and 1433cm⁻¹. The very intensive absorption band at 836cm⁻¹ was assigned to the P-F vibration in PF₆⁻. The broad band at 3430cm⁻¹ might be caused by the small amount of water in KBr.

[Cu₆(bdmap)₃(OAc)₅(PyOH)(PyO)₂][PF₆]₂ 6

83

ژ م

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Synthesis: It has been shown that the Cu(II) atoms in the planar tetrameric compounds of 3-5 were linked by the mixed ligands of acetate and bdmap ligands. If one more ligand is introduced, and the soluble source of $Bi(C_{6}H_{5})_{3}$ is added, Bi-Cu complex should be synthesized. This is the synthetic strategy involved in the design of reaction (10). However, a hexanuclear Cu^{II} compound 6 was obtained from the reaction (10) instead of the proposed Bi-Cu complex. The crystals of 6 were not very good. Due to contamination by impurities we were unable to obtain reliable magnetic susceptibility date. With the hope to synthesize the compound 6 in a pure form, the reactions (11), (12) and (13) were designed. However, green blue powders were obtained from these reactions, and in neither case a single product was isolated. $Cu_2(bdmap)_2Cl_4 + 2Cu(OAc) \cdot H_2O + Bi(C_6H_5)_3 + 4PyOH + 3AgOAc + TIPF_6 \rightarrow$ [Cu₆(bdmap)₃(OAc)₅(PyO)₂(PyOH)][PF₆]₂ (10) $2Cu_2(bdmapH)_2Cl_4 + 2Cu(OAc)_2 \cdot H_2O + 3PyOH + 2TIPF_6 + 6AgOAc \rightarrow$ [Cu₆(bdmap)₃(OAc)₅(PyO)₂(PyOH)][PF₆]₂ (11) $3/2Cu_2(bdmapH)_2Cl_4 + 2Cu(OAc)_2 \cdot H_2O + CuCl_2 + 3PyOH + 2TIPF_6 + 4AgOAc \rightarrow$ [Cu₆(bdmap)₃(OAc)₅(PyOH)(PyO)₇][PF₆]₂ (12) $3/2Cu_2(bdmapH)_2Cl_4 + 2Cu(OMe)_2 + CuCl_2 + 3PyOH + 2TiPF_6 + 6AgOAc \rightarrow$ $[Cu_6(bdmap)_3(PyO)_2(PyOH)(OAc)_3][PF_6]_2$ (13)

It has been determined by single-crystal X-ray crystal analysis that the hexanuclear Cu(II) compound **6** contains a tetramer $[Cu_4(OAc)_2(bdmap)_2(PyO)_2]$ unit and a dimer unit $[Cu_2(OAc)_3(bdmap)]$. The dimer unit is similar to that of $[Cu_2(OAc)_3(bdmap)]$ synthesized by our group¹²⁷. If the tetramer can be synthesized independently, the hexamer might be obtained by

mixing the tetramer unit with the dimer unit in organic solvent. The reactions of (14) and (15) were designed for the synthesis of the tetramer, $[Cu_4(bdmap)_2(OAc)_2(PyO)_2][PF_a]_2$. $2Cu_2(bdmapH)_2Cl_4 + 2PyOH + 6AgOAc + 2TIPF_6 \rightarrow$ $[Cu_4(bdmap)_2(OAc)_2(PyO)_2][PF_a]_2$ (14) $[Cu_4(bdmap)_2(OAc)_4][PF_6]_2 + 2PyOH \rightarrow$ $2HOAc + [Cu_4(bdmap)_2(OAc)_2(PyO)_2][PF_a]_2$ (15)

Unfortunately, it was very difficult to obtain crystals from (14) and (15). The reaction (14) produced a blue green powder. The reaction (15) produced a green blue solution. However, in neither case could a single product be isolated.

The dimer, $Cu_2(bdmap)(OAc)_3$, can be synthesized by reaction (16). A very soluble blue solution was obtained. However, when the solutions from (15) and (16) were mixed together, no crystals of compound $\hat{6}$ were obtained.

$$2Cu(OMe)_2 + bdmapH + 3HOAc \rightarrow Cu_2(bdmap)(OAc)_3 + 4HOMe$$
(16)

X-ray Crystal Structure: The compound 6 has been characterized by single-crystal Xray analyses. The partially finished structure of the cation of 6 is shown in Figure 25. The most interesting feature of this compound is that the structure contains a Cu^{II}_{4} unit and a Cu^{II}_{2} unit. The Cu^{II}_{4} unit is very similar to the structure of 1-3. Four Cu(II) ions are coplanar. A twelvemembered ring was formed by the four copper(II) atoms, two CO₂ group from acetate ligands and two oxygen atoms from bdmap ligands. The twelve-membered ring is the same as the rings Structure of Compound 6

Figure 25.

•

in 3-5. The two oxygen atoms from two PyO ligands bridge two pairs of copper atoms, Cu(1)/Cu(2) and Cu(3)/Cu(4). The nitrogen atoms of the two PyO ligands are coordinated to Cu(1) and Cu(3) atoms. In the dimeric unit, the acetate ligand bridges Cu(5) and Cu(6) atoms by two oxygen atoms. The oxygen atom from the bdmap ligand also bridges the Cu(5) and Cu(6) in the opposite side. The Cu_4^{T} unit and Cu_2^{T} unit were linked together by an acetate ligand to form a one dimensional structure in the solid state. Hexanuclear Cu_6 units are very limited in Cu(II) structures.⁶⁹ The one example reported previously is $[Cu_3O(dpeo)_3]_2^{139}$, where depo = 1,2-diphenyl-2-(methylamino)ethanone-1-oxime. Two trinuclear $[Cu_3O(dpeo)_3]$ units dimerize to form this compound.

IR Spectrum Analysis: The IR spectrum of 6 is shown in Figure 26. The band at 3380cm⁻¹ was assigned to the OH stretch of PyOH in 6. The antisymmetric and asymmetric OAc⁻ stretching frequencies in 6 were assigned to 1656cm⁻¹ and 1475cm⁻¹ respectively. By comparison with the IR spectrum of a pure sample of PyOH, the bands at 1435cm⁻¹ and 1570^{-1} were assigned to the aromatic C=C and C=N stretching in PyO⁻ or PyOH. The very intensive absorption band at 838cm⁻¹ was assigned to the P-F vibration in PF₆⁻ anion.

III.4. Conclusion

A new class of cyclic tetranuclear Cu(II) complexes has been synthesized. The dimeric compound, $Cu_2(bdmapH)_2Cl_4$ 1, is very good starting material for the syntheses of 3 and 4 in the presence of mixed ligands of OAc⁻ and bdmap. These complexes are capable of forming one-dimensional arrays in the solid state if appropriate ligands and metal ions are present. They are

5

potential precursors for the synthesis of heteronuclear metal complexes with compositions and structures resembling those of high T_c superconductors.
References

- Bednorz, J.G.; Müller, K.A.; Takashige, M. Science(Washington, D.C) 1987, 236, 73.
- 2. Bednorz, J.G.; Müller, K.A. Z. Phys. B: Condens. Matter 1986, 64, 189.
- Chemistry of High-Temperature Superconductors; Nelson, D.L.; Whittingham, M.S.; George, T.F.; Eds.; ACS Symposium Series 351; American Chemical Society: Washington, D.C. 1987.
- 4. Williams, J.M.; Beno, M.A.; Carlson, K.D.; Geiser, U.; Kao, H.C.L.; Kini, A.M.H.; Evain, M. Acc. Chem. Res. 1988, 21, 1.
- Holland, G.F.; Stacy, A.M. Acc. Chem. Res. 1988, 21, 8. Rao, C.N.R. J. Solid State Chem. 1988. 74, 147.
- 6. Rao, C.N.R. Mod. Phys. Lett. B. 1988, 2, 1217.
- 7. Chemistry of Oxide Superconductors; Rao, C.N.R.; Ed.; Blackwell Sci. Publns:Oxford, 1988. Also see: Chemical and Structural Aspects of High
 -Temperature Superconductors. In Progressin High-Temperature Superconductivity; Rao, C.N.R.; Ed.; World Scientific: Singapore, 1988; Vol. VII.
- Raveau, B., et al. Caen High Tc superconductors, University of Caen, France: Vols.
 I-IV. 1988
- Maeda, H.; Tanaka, Y.; Fukutomi, M.; Asano, T. Jpn. J. Appl. Phys. 1988, 27, L209.
- Hervien, M.; Michek, C.; Domenges, B.; Laliguant, Y.; Lebail, A.; Feray, G.; Raveau,
 B. Mod. Phys. Letter. B 1988, 2, 491, 835.
- Hazen, R.M.; Drewitt, C.T.; Argel, R.J.; Ross, N.L.; Finger, L.W.; Hadidiacos,
 C.G.; Velden, D.R.; Heaney, P.J.; Hor, P.H.; Meng, R.L.; Snn, Y.Y.; Wang, Y.Q.;
 Xue, Y.Y.; Huang, Z.J; Gao, L.; Bechtold, J.; Chu, C.W. Phys. Rev. Lett. 1988,

60, 1174.

- Subramanian, M.A.; Torardi, C.C.; Calabrese, J.C.; Gopalakrishnan, J.; Morrissey,
 J.J.; Askew, T.R.; Flippen, R.B.; Chowdhry, U.; Sleight, A.W. Science 1988, 239,
 1015.
- Rao, C.N.R.; Ganapathi, L.; Vijayararaghavan, R.; Ra, G.R.; Murthy, K.; Mohan Ram, R.A. Physica C 1988, 156, 827.
- 14. Sheng, Z.Z.; Hermann, A.M.; Nature 1988, 332, 55, 138.
- Sheng, Z.Z.; Hermann, A.M.; Ali, A.E.; Almasan, C.; Estrada, J.; Datta, T. Phys. Rev. Lett. 1988, 74, 428.
- Maignan, A.; Michel, C.; Hervieu, M.; Martin, C.; Groult, D.; Ravean, B.Mod. Phys. lett. B 1988, 2, 681.
- Martin, C.; Michel, C.; Maignan, A.; Hervieu, M.; Raveau, B.C. R.Acad. Sci., Ser.
 2. 1988, 307, 27.
- Parkin, S.S.P.; Lee, V. Y.; Engler, E.M.; Nazzal, A.I.; Huang, J. C.; Gorman, G.;
 Savov, R.; Beyers, R. Phys. Rev. Lett. 1988, 60, 2539.
- Ganguli, A.K.; Nanjundaswamy, K.S.; Subbanna, G.N.; Unarji, A.M.; Bhat, S.V.;
 Rao, C.N.R. Solid State Commun. 1988, 87, 39.
- 20. Ganguli, A.K.; Nanjundaswamy, K.S.; Subbanna, G. N.; Rajumon, M.K.; Sarma,
 D.D.; Rao, C.N.R.; Mod. Phys. Lett. B. 1988, 2, 1169.
- Cava, R.J.; Batlogg, B.; Krajewski, J.J.; Rupp, L.W.; Schneemeyer, L.F.; Siegrest, T.; Van Dower, R.B.; Marsh, P.; Perk, W.F.; Jr.; Gallagher, P.K.; Glarium, S.H.; Marshall, J.H.; Farrow, K.C.; Waszezak, J.V.; Hull, R.; Trevor, P. Nature 1988, 336, 221.
- 22. Physics and Materials Science of High Temperature Saperconductors. Kossowsky, R.; Methfessel, S.; and Wohlleben. D. editors, NATO ASI series E: Applied Science Vol. 181, 1989, Kluwer Academic Publishers: Dordrecht, The Netherlands.

- High Temperature Superconductors: Fundamental Properties and Novel Material Processing. Christen, D.; Narayan, J.; Schneemeyer, L. Editors, Materials Res. Soc.
 Symp Proce. Vol. 169, 1990: Pittsburgh, Pennsylvania.
- 24. Kresin, V.E.; Wolf, S.A. "Fundamenta of Superconductivity," Plenum Press: New York, 1990.
- Poole, C.P., Jr.; Datta, T.; Farach, H.A. "Copper Oxide Superconductors" John Wiley & Sons: New York, 1988.
- 26. Chemistry of High Temperature Superconductors, II, Nelson, D. L.; Geouge, T.F. editors, ACS symp. ser. 377; Whshighton, D.C. 1988.
- Physics of High-Tc Superconductors, Philips, J.C. Acadmic Press, Inc.: San Diego, CA. 1989.
- Holland, G.A.; Hoskins, R.L.; Diox, M.A.; Ver Nooy, P.D.; ZurLoye, H.-C.;
 Brimhall, G.; Sallivan, D.; Cormia, R.; Zandbuergen, H.W.; Gronsky. R.; Stacy,
 A.M. In Chemistry of the High-Temperature Superconductors; ACS Symp. Ser.
 351 American Chem Soc: Washington, D.C. 1987; P102.
- 29. Stucki, F.; Bruesch, P.; Baumann, T. Physica C 1988, 152, 200.
- Michael J. McGeary, Poul. S. Coan, K. Folting., W.E. Streib and K.G. Cautton. Inorg. Chem. 30, 1991, 1725.
- Uhlmann, D.R.; Zwlinski, B.J.J.; Wnek, G.E. Mater. Res. Soc., Symp. Proc. 1984, 32, 59.
- 32. Dislich, H. Angew. Chem., Int. Ed. Engl. 1971, 10. 363.
- 33. Dislich, H.; Hussman, E. Thin Solids Films. 1981, 77, 129.
- 34. Dislich, H.; J. Non-Cryst. Solids 1985, 73, 599.
- 35. Dislich, H.; Transformation of Organometallics into Common and Exotic Materials. Laine, R.M.; Ed.; Martinas Nijhoff: Dordrecht, Boston, Lancaster, 1988 PP 236-249.
- 36. Sakka, S.; Kamiay, K. J. Non-Cryst. Solids. 1980, 42, 403.

- 37. Donald C. Bradley; Chem. Rev. 1989. 89. 1317-1322.
- 38. K.G. Caulton. Chem. Rev. 1990. 90. 969-995.
- 39. Vlrich, D.K. C&EN News, January 1, 1990 P28.
- 40. Ceramic Superconductors. Yan, M.F. edi.; Amer. Cecamic Soc. 1988.
- 41. Better Ceramics through Chemistry, IV. Zelinski, B.J.J.; Brinker, C.J.; Clark, D.E.; Ulrich, D.R. editors, 1990, Marterial Research Soc.: Pittsburgh, Pennsylvania.
- 42. Bradly. D.C.; Mehrotra, R.C.; Gaur, D.P. Metal Alkoxides; Academic Press: London, 1978.
- Sauer, N.N.; Gareia, E.; Salazar, K.V.; Ryan, R.D.; Martin, J.A. J. Am. Chem. Soc. 1990, 112, 1534.
- 44. Suning Wang. Inorg. Chem. 1991, 30, 2252-2253.
- 45. Mazdiyasni, K.S.; Lynch, C.T.; Smith, J.S. Inorg. Chem. 1966, 5, 342.
- 46. Brown, L.M.; Mazdiyasni, K.S. Inorg. Chem. 1970, 9, 2783.
- 47. Evans, W.J.; Sollberger, M.S. J. Am. Chem. Soc. 1986. 108, 6095.
- 48. Evans, W.J.; Sollberger, M.S.; Hanusa, T.P. J. Am. Chem. Soc. 1988, 110, 1841.
- 49. Evans, W.J.; Sollberger, M.S. Inorg. Chem. 1988, 27, 4417.
- Bradley, D.C.; Chudzynska, H.; Frigo, D.M.; Hursthouse, M.B.; Mazid, M.A.J.
 Chem. Soc., Chem. Commun. 1988,1258.
- Poncelet, O.; Scartain. W.J.; Hubert-Pfalzgraf, L.G.; Folting, K.; Caulton, K.G.; Inorg. Chem. 1989, 28, 263.
- 52. Hitchcock, P.B.; Lappert, M.F.; Singh, A. J. Chem. Soc., Chem. Commun. 1983, 1499.
- 53. Hitchcock, P.B.; Lappert, M.F.; Smith, R.G. Inorg. Chim. Acta. 1987, 139, 183.
- MeGeary, M.J.; Coan, P.S.; Folting, K.; Streib, W.E.; Caulton, K.G. Inorg. Chem. 1989, 28, 3283.
- 55. Evans, W.J.; Olofson, J.M.; Ziller, J.W. Inorg. Chem. 1989, 28,4308.

- 56. Gradeff, P.S.; Yunlu, k.; Deming, T.J.; Olofson, J.M.; Doedens, R.J.; Evans, W.J.;
 Inorg. Chem. 1990, 29, 420.
- 57. Mackenzie, J.D. J. Non-Cryst. Solids. 1988, 100, 162.
- 58. Mazdiyashi, K.S.; Dollof, R.T.; Smith, J.S. J. Am. Ceram. Soc. 1969, 52, 523.
- 59. Mazdiyashi, K.S.; Dollof, R.T.; Smith, J.S. J. Am. Ceram. Soc. 1970, 53. 91.
- Goel, S.C.; Kramer, K.S.; Gibbons, P.C.; Buhro, W.E. Inorg, Chem. 1989, 28, 3620
 -3622.
- 61. Horowitz, H.S.; Melain. S.J.; Sleight, A.L.; Biggs, B.D.; Poon, J.J. Science. 1989, 243, 66-69.
- 62. Goel, S.C.; Kramer, K.S.; Chaing, M.Y.; Buhro, W.E. Polyhedron. 1990, 9, 611.
- 63. Fahrenholtz, W.G.; Millar, D.M.; Payne, D.A. Research Update 1988, Ceramic Superconductors II; American Ceramic Socity: Westerville, OH, 1988, P141.
- 64. Monde, T.; Kozuka, H.; Sakka, S. Chem. Lett. 1988, 287.
- 65. Nonaka, T.; Kaneko, K.; Hasegawa, T.; Kishio, K.; Takahashi, Y.; Kobayshi,; K.; Kitazawa, K.; Fueki, K. Jpn. J. Appl. Phys. 1988, 27. L867.
- Kavindranathan, P.; Komarneni, S.; Bhalla, A.; Roy, K. Cross, L.E. J. Mater. Res. 1988, 3. 810.
- 67. Kramer, S.A.; Kordas, G.; McMillan, J.; Hilton, G.C.; Van Harligen, D.J.Appl. Phys. Lett. 1988, 53, 156.
- 68. Kramer, S.; Wu, K.; Kordas, G. Mater. Res. Soc. Proc. 1988, 9. 323.
- 69. Hart, F.A. In Comprehensive Coordination Chemistry; Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford, England, 1987; Vol. 5.
- Hart, F.A. In Comprehensive Coordination Chemistry; Wilkinson, G, Gillard, R.D.;
 McCleverty, J.A.; Eds.; Pergamon Press; Oxford, England, 1987; Vol. 2. P24.

2

- 71. Mehrotra, R.C. Mater. Res. Soc. Symp. Proc. 1988, 121, 81.
- 72. Willis, C. J. Coord. Chem. Rev. 1988, 88, 133.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 73. Cotton, F.A.; Wilkinson, G. Advanced Inorg. Chem., 5th edi.; 1988. John Wiley&sons: New York.
- 74. Estes, E.D.; Hodgson, D.J. Inorg. Chem. 1975, 14, 334.
- 75. Merghenn, R.; Merz. L.; Haase, W. J. Chem. Soc.; Dalton trans. 1980, 1703.
- 76. Lange's Handbook of Chemistry, 13th edi.; Dean, J. A.; Edi.; McGraw-Hill BookCo.; New York, 1985.
- Hamilton, W.C.; Ibers, J.A. Hydrogen bonding in solid; Benjamin. New York, 1968.
- 78. Novak, A. Struct. Bonding. 1974, 18, 177.
- 79. Vinogrador, S.N.; Linnell, R.H. Hydrogen Bonding, Van Nostrand Keinhold Co.; New York 1971.
- 80. V.C. Copeland, W.E. Hatfield and D.J. Hodgson, Inorg. Chem. 12, 1340, 1973.
- Comprehensive Coordination Chemistry. S.G. Wilkinson, R.D. Gillard, J.A. McCleverty. Pergamon Press. V5. 1987.
- 82. A.Massey, in Comprehensive Inorganic Chemistry, Edi. J.C. Bailar, H.J. Emeleus, R.S. Nyholm and A.F. Trotman-Dickinson, Pergamon, Oxford, 1973, Vol. 3, Pl.
- 83. B.J. Hathaway and D.E. Billing, Coord. Chem. Rev., 1970, 5, 143.
- 84. V. Casellato, M. Vidali and P.A. Vigato, Coord. Chem. Rev. 1977, 23, 31.
- 85. A. Earnshaw, An Introduction to Magnetochemistry, Academic, London, 1968.
- 86. F.E. Mabbs and D.J. Machin, Magnetism and Transition Metal Complexes, Chapman and Hall, London, 1973.
- K.D. Karlin and J.Zubieta. Edi.; Copper Coordination Chemistry: Biochemical and Inorganic Perspectives; Adenine Press, New York, 1983.
- K.D. Karlin and J. Zubieta. Edi,; Biological and Inorganic Copper Chemistry;
 Adenine Press, New York, 1986.
- 89. F. Hein and W. Beerstecher, Z. Anorg. Allg. Chem., 1955, 282, 93.
- 90. F. Hein and W. Ludwig. Z. Anorg. Allg. Chem., 1965, 338.63.

- 91. A. Pajunen and M. Lehtonen. Suom. Kemistilehti B, 1971, 44, 200.
- 92. L.J. Bellamy, "The Infrared Spectra of Complex Molecules" Third Edi.: John, Wiley and sons, Inc., New York, 1975.
- 93. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Irt. Edi.; 1962. 4ed.; 1986. Wiley: New York.
- 94. K. Veno and A.E. Martell, J. Phys. Chem. 59. 998(1955); 60, 1270, 1956.
- 95. H. Morgon. U.S. Atomic Energy Commission, 1949; AECD, 12659.
- 96. J. Lecomte, Dise. Faraday Soc., 9. 108, 1950; C. Duval, R. Freymann and J. Lecomte, Bull. Soc. Chim. France, 106, 1952. 100. T.L. Cottrell and L.E. Sutton, Proc. Roy. Soc. A 207, 49, 1951.
- 97. E.A.V. Ebsworth, D.W.H. Rankin and S. Cradock, "Structural Methods in Inorganic Chemistry", Blackwell Scientific Publication, London, 1987.
- 98. W.E. Hatfield, Inorg. Chem., 1972, 11, 216.
- 99. R. Beckett, R. Colton, B.F. Hoskins, R.L. Martin, and D.G. Vince. Aust.J. Chem., 1969, 22, 2537.
- 100. B.F. Hoskins. J. Chem. Soc., Dalton Trans., 1972. 291.
- 101 D. Datta, P.K. Mascharak and A. Chakravorty, Inorg. Chem., 1981, 20, 1673. Inorg.
 Chim. Acta, 1978, 27, L95.
- 102. S. Baral and A. Chakravorty. Inorg. Chim. Acta, 1980, 39, 1.
- 103.: D. Datta and A. Chakravorty, Inorg. Chem., 1982, 21, 363.
- 104. G. Kolks, S.J. Lippard, J.V. Waszczak. J. Am. Chem. Soc. 1980, 102, 4832.
- 105. R. Beckett, B.F. Hoskins. J. Chem. Soc. Dalton. 1972. 291.
- 106. J.M.E. Harp, R.J. Colton, and L.C. Feldman, Eds., Thin Film Processing and Characterization of High-Temperature Superconductors, American Vacuum Society Series No.3 American Institute of Physics Conference Proceedings No.165(American Institute of Physics, New York, 1988).

.

107. D.W. Copone II, W.H. Butler, B. Batlogg, and C.W. Chu, Eds., High Temperature Superconductors II, Extended Abstracts (Meterials Research Society, Pittsburgh, 1988).

- 108. Suning Wang, S. Trepanier, M.J. Wagner. Inorg. Chem. 1993, 33, in press.
- 109. Suning Wang. Unpublished.
- Hart, F.A. In Comprehensive coordination Chemistry; Wilkinson, G., Gillard, R.D.,
 McCleverty, J.A., Eds.; Pergamon Press: Oxford, England 1987; Vol.3, Chapter 39.
- C.P. Poole, Jr., T. Datta, H.A. Farach. Copper Oxide Superconductor; John Wiley&Sons: New York, 1988.
- 112. R.W.M. ten Hoedt, F.B. Hulsbergen. G.C. Verschoor. J. Reedijk. Inorg. Chem. 1982, 21, 2369.
- J.A. Samuels. B.A. Vaartstra, J.C. Huffman, K.L. Trojan, W.E. Hatfield, K.G. Caulton. J. Am. Chem. Soc. 1990, 112, 9623.
- 114. M. Melnik. Coord. Chem. Rev. 1982, 42, 259.
- Brodersen, K.; Hummel, Hans-Ulrich. In Comprehensive Coordination Chemistry;
 Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford,
 England, 1987; Vol. 2, Chapter 15.1.
- 116. Simard, M.; Su, D.; Wuest, D.J. J. Am. Chem. Soc. 1991, 113, 4696.
- 117. Lehn, Jean-Marie. Angew Chem, Int. Eds. Engl. 1990, 29, 1304.
- 118. Extended Linear Chain Compounds; Miller, J.S., Edi.; Plenum: New York and London, 1981-1983; Vols. 1-3.
- Marks, T.J. Science. 1985, 227, 881.125. Wang.S.; Fackler, J.P., Jr.; King, C.;
 Wang, J.C. J. Am. Chem. Soc. 1988, 110. 3308.
- 120. Wang. S.; Garzon, G.; King. C.; Wang, J.C.; Fackler, J.P.; Jr. Inorg. Chem. 1989, 28, 4623.
- 121. Sletten, J.; SØrensen, A.; Julve, M.; Journaux, Y. Inorg. Chem. 1990, 29, 5054.
- 122. E. Uhlig and K. Staiger. Z. Anrog. Allg. Chem., 346, 21, 1966.
- 123. E. Uhlig and K. Staiger. Z. Anrog. Allg. Chem., 360, 39, 1968.

- 124. Zheng, J.C.; Rousseau, R.J.; Wang, S. Inorg. Chem. 1992, 31, 106.
- 125. Purdy, A.P.; George, C.F.; Callahan, J.H.; Inorg. Chem. 1991, 30, 2812.
- 126. Purdy. A.P.; George, C.F.; Callahan, J.H.; Inorg. Chem. 1991, 30, 1970.
- 127. S. Wang; K.D.L. Smith; Z. Pang; M.J. Wagner, J.C.S. Chem. Comm. 1992, 1594
- Matsumoto, N.; Ueda, I.; Nishida, Y.; Kida, S.; Bull. Chem. Soc. Jpn. 1976, 49(5), 1308-12.
- 129. Pajunen, A.; Smolander, K.; Finn. Chem. Lett. 1974, (3), 99-103.
- 130. Merz, L.; Haase, W.; J. Chem. Soc., Dalton Trans, 1978, (11), 1594-8.
- 131. Mergehenn, W.; Haase, W.; Acta Crystallogr., Sect. B 1977, B33(6), 1877-82.
- 132. Mergehenn, W.; Haase, W.; Acta Crystallogr., Sect. B 1977, B33(9), 2734-9.
- 133. Haase, W.; Mergehenn, R.; Krell, W.; Anorg. Chem., Org. Chem. 1976 31B(1), 859.
- 134. Haase. W.; Chem. Ber. 1973, 106(10), 3132-48.
- 135. Pajunen, A.; Lehtonen, M.; Suom. Kemistilehti B 1971, 44(7-8), 200-6.
- 136. Mergehenn, R.; Merz, L.; Haase, W.; Z. Natureforsch., Teil B 1975, 30B(1-2), 14-8
- Mergehenn, R.; Haase, W.; Alimann, R.; Acta Crystallogr., Sect. B 1975, B 31(7) 1847-53.
- 138. Mergehenn, R.; Haase, R.; Anorg. Chem., Org. Chem. 1975, 30 B(3-4), 155-8.
- 139. Hendrickson, A.R.; Martin, R.L. and Rohde, N.M.; Inorg. Chem. 1976, 15, 2115.

VITA AUCTORIS

- Born: March 10, 1964, China
- Education: JiLin University, Chang Chun, China 1982-1986 B.Sc. Chemistry

University of Windsor, Windsor, Ontario 1990-present

Scholarships: Research Assistantship (held at Windsor), 1990-1992

Teaching Assistantship (held at Windsor), 1990-1992

Affiliations: Member of the Chemical Institute of Canada

Member of the Graduate Chemistry Club

Publications and Presentations:

- 1. Presented a poster at the 24th Inorganic Discussion Weekend, on August, 1991, in Kingston, Ontario.
- 2. Gave a lecture at Graduate Students Symposium, on May, 1991, in Buffalo, New York.
- 3. J.C. Zheng; R.J. Rousseau; S. Wang. Inorg. Chem. 1992, 31, 106.
- 4. S. Wang; J.C. Zheng; S. Trepanier; Z. Pang; M.J. Wagner. Inorg. Chem. 1992, 31, 2118.